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Abstract
Rarely is it understood how much the utility of an experiment depends on seemingly small details in the choices of experimental conditions and measurements. Starting from some simple intuitive and ad hoc procedures in the late 1970’s, the Navy has developed a framework called Quantitative Design Of Experiments for designing complex tests in conjunction with physics-based modeling and simulation. This framework allows one to foresee and avoid many problems in the detailed design of proposed tests or experiments before they are executed with flawed designs. With traditional methods of planning these tests, such problems would typically come to light only in the post mortem analysis of partial or complete failure to achieve the goal of the experiment. Typical problems, most illustrated by examples from field experience, are as follows:

1. Unbalanced redundancy, or lack of consistency checking for isolated subsets of sensors or test conditions; 

2. Ill-conditioning, or unreliable estimates for some specific parameters of interest; 

3. Incompleteness, or estimates for certain parameters that reflect all information gathered by the sensors but lack key unmeasured localized effects; 

4. Low power, or inadequate ability to discriminate among potential alternative models of the physical system;

5. Aliasing or misinterpretation of results due to errors in the model; and

6. Inadequate overall redundancy, or inadequate capability to detect model errors or the presence of a small number of unmodeled effects.

The basic connection to Bayesian methods is that one’s interpretation of the data is conditional on one’s prior belief as to the circumstances that gave rise to the data. Bayesian interpretation of results gives one the chance to redistribute probability mass within the non-zero regions of one’s prior belief. It also has the potential to warn one (by absurdly small posterior probability of having observed one’s data given everything in the prior) that one’s prior belief was incomplete. 

Prior beliefs are codified in part as equations and probability distributions, which constitute “the model” representing the physical system giving rise to the data. There is inevitably loss of information in going from the physical system to its model, giving rise to so-called random effects (those not attributable to retained information). However, risks to the experimenter lie not just in uncertainties due to lack of information, but also in uncertainties due to implicit but unevaluated consequences of one’s belief. By illustrating the need to compute such implicit results — whether symbolically or numerically — and to evaluate explicitly the consequences relative to one’s goals, quantitative design of experiments provides not just a framework but the motivation necessary to prepare for an experiment in a way that avoids most foreseeable problems.
The purpose of this talk is to comment on the purpose of experiments and the nature of the risks associated with them. The connection of this topic to Bayesian methods is that the interpretation of the experiment is conditional on one’s prior belief about how the data arose. Factors subject to prior belief include the details of the items under test, the details of test conditions, and the details of sensor arrangement and performance.  An incomplete range of alternatives in these areas of the prior will lead to misinterpretation. 

This talk will sketch out present methods of QDOE developed by the Navy and illustrate common pitfalls as experienced in major tests. The final box score on seven such tests, designed and conducted during the period 1981 – 1996, could be given as 3-1-3. That is, using QDOE we experienced three wins (i.e., foresaw a problem and avoided it), one loss (could not recover from a problem), and three ties (ran into a problem but recovered from it). Without QDOE, despite the fact that our goals would have been less ambitious, the probable outcome even for those lower goals would have been something like 2-4-1 — many more losses.

Introduction

What do we mean by “design” of experiments? In one sense, all experiments are designed; they are just designed by different methods. Let us refer to one common method as “engineering (or scientific) judgement”. In this method, persons experienced in analysis and testing look at the goal to be achieved and the test resources available and come up with what seems to all involved a reasonable test plan. The key words here are “seems” and “judgement”. Little or no quantitative prediction of sample test data is done before the experiment. Little or no quantitative processing of predicted data is done to see how various expected real-life problems will affect interpretation of the data. Such consequences of experimental plans are implicit in the plans themselves, when considered in light of the beliefs one can bring to bear in reducing the data. Only when such implicit consequences are rendered explicit by computation (or by performing the experiment) can the consequences be evaluated as acceptable or unacceptable for the purpose at hand. In this paper, by “design” of experiments, we will mean quantitative prediction of data and evaluation of the effects of expected problems — in other word, the QDOE methods of this paper.

Why should one take the trouble to do QDOE? Well, every experiment — successful or not — has costs in the real world. Consider the risks of a “bad” experiment. If an experiment is inconclusive (uninformative or recognized as ambiguous), that is typically considered bad. However, if an experiment is misleading or ambiguous and this is not recognized at the time when its results are first interpreted, the consequences can be far worse. An inconclusive experiment just wastes the resources used in its execution. The misleading experiment can waste the resources of additional follow up work until the misinterpretation is discovered. Further, the consequences just mentioned are those for project resources. Consider the consequences for the experiment designer. If failure is due to circumstances that no one could reasonably be expected to have foreseen, the outcome will be taken as unfortunate but the designer will usually not be blamed. However, if failure is due to facts that one could have foreseen but did not, the consequences for the designer will be much worse. The consequences to the designer can be particularly severe if the sponsor has been allowed to believe that all appropriate calculations have been performed. Applying QDOE often requires money for a modest amount of computation (to render explicit the consequences of various alternative experimental arrangements). It is the sponsor’s role to trade money against risk of failure. It should be the designer’s role to point out such tradeoffs to the sponsor. QDOE enables to designer to perform this role to an extent that is impossible with non-quantitative methods.

In short, the reason for QDOE is that it lets one ask and answer, before conducting an experiment in the real world, a vital question. The question is “OK, I have beliefs prior to running the experiment as to the nominal experiment and my known uncertainties, and as to my nominal understanding of nature and the alternatives I consider plausible enough to take into account. Suppose I computed the likely outcomes of this experiment considering all of this prior belief. If I evaluated the outcomes relative to what I hope to learn from the experiment, would I be willing to risk the resources to do it this way, or would I want to develop a better plan?” The key here is that only if one asks (and answers) this question before the experiment does one have a chance of avoiding problems foreseeable by QDOE but unforeseeable by non- quantitative methods. For an illustration and memory aid, see Figure 1.

Figure 2 shows five important parts of an experiment. The most important of these is the purpose. The purpose of almost any experiment is to arrive at a posterior belief “better” than one’s prior belief (“prior” and “posterior” here refer to before and after performing the experiment and interpreting the data from it). “Belief” here has the usual Bayesian interpretation as a probability distribution over some space of parameters of interest. “Better” means either less uncertainty among alternatives or a warning that one’s prior is inconsistent with the data. Such a warning is given by an improbably low likelihood of having observed the data, given one’s prior belief. Recognizing this warning can prevent costly misinterpretations. Note that the prior belief includes information on details of the excitation and sampling parts of the experiment, both nominal and off nominal. The interpretation of the experiment is conditional on this information in one’s prior belief, as well as determined by the actual excitation and sampled response. How well the interpretation can be expected to achieve the desired purpose varies with the details of the excitation and response sampling. 
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QDOE: simple exact linear model
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What are some typical purposes for an experiment? This depends on how much one is given and how much one wishes to find out. One may be given alternative forms of model and wish to identify the one(s) that agree with the data. If given a single form of a model, one may wish to identify parameters within the form. If given definite form and parameter values, one may wish to identify from the data the state of the system. Finally, given a set of failure mechanisms for the system and a state history, one may wish to track the system’s health or margin to failure.

Excitation is what you present to nature to provoke a response. You can’t run all possible experiments. Rather, what items you choose to use in the experiment, how you choose to interconnect them, and the set of conditions to which you choose to subject them, is a selection from the space of all possible experiments. Different selections (i.e., different choices of excitation) will have greater or lesser effectiveness in achieving your purpose. 

There is in control theory a theorem on “completeness of excitation”. This states that if you want to reach some conclusions about a parameter by excitation and response, you have to provide excitation for which different values of the parameter will show different responses. If you want to determine all the resonances of a system within a given frequency band, it does not suffice to take steady state data at a single frequency, or to provide broadband excitation with no energy at the frequencies of interest.
 The same principle applies in QDOE. Not all choices of excitation are adequate for a given experimental purpose.

Similarly, response sampling is what determines where you get data from the experiment. Remember, in an analytical model you have complete information at every point in the model. In an experiment, you get information only where you place sensors to make measurements. Although you can and should select what susbset of analysis points will get sensors for fitting data to the analysis, you aren’t installing perfect sensors on the analysis model — you’re installing real sensors in the approximately corresponding locations on the real equipment. There are uncertainties in location, orientation, and gage performance, to name a few, such that the sensors again can be said to sample the response of the experiment from the space of uncertainties around the nominal sensor selection. As with excitation, you want to get a sensor layout that has balanced redundancy and is well conditioned. There is an interesting duality between redundancy of excitation and redundancy of response sampling, but it is beyond the scope of this paper.
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QDOE: More Complex Exact Model
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The present method of QDOE stems from a sensor response model dominated by a fixed response matrix plus noise (see Figure 3, which is a slide from a tutorial on this subject). The response matrix depends only on the gage layout and the model basis (the load cases spanning all types of evoked response). The amplitudes of the load cases present in the physical system will vary over time, but the gage response will be some noise plus a fixed linear combination of the time-varying load case amplitudes. The fact that the response matrix is fixed (does not depend on the time-varying data, just on the time-invariant sensor layout and model basis) means that the pseudoinverse of this matrix is fixed. Also fixed is their product, the projection or “hat” matrix that maps a vector of sensor readings into their corresponding best-fit values within the model. The diagonal elements of this data-independent hat matrix indicate the extent of consistency checking (redundancy) available to each sensor for a particular sensor layout and model basis. The concept of projecting into the model space leads to a goodness of fit index “R2” equal to the sum of squares of the fitted data over the sum of squares of the measured data. This index can be used instantaneously (with some cautions about times of low response) or as a moving average to locate periods producing particularly poor fit, or summed over the entire test transient for an overall index.

For historical reasons, the present method is more Boolean in spirit than Bayesian. Load cases (columns of the response matrix) are either in or out of the model, with nothing in between. The method takes no formal account of marginal distribution for any load case amplitude, other than some scaling thumb rules. The joint distribution of load case amplitudes is reflected only in that projection of joint data onto load cases can “explain” most of the variation considered significant. Despite the current lack of a Bayesian version of this method, benefits of the method have been so substantial as to warrant presentation here. 

In particular, the method shows the influence of sensor layout choices on the performance characteristics of a sensor array. These characteristics include redundancy (consistency checking between sensors) and conditioning (amplification of noise and model errors). The method shows the effects of aliasing
 (mis-interpretation) of noise as modeled effects and aliasing of one load case as another due to model errors. Finally, the method makes it easy to consider robustness (graceful degradation on individual gage failure). 
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Singular Value Decomposition (SVD)
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See Figure 4, another page from the earlier tutorial, which shows that intermediate QDOE also fits on one slide. Intermediate QDOE is designing an experiment not just to give evidence of good fit to a model, but also to provide well-characterized estimates of state-dependent quantities at locations where one does not (often can not) place sensors. Note that in addition to aliasing from noise and model error, we get a measure of incompleteness. The desired quantity will consist of two parts — a global component that can be estimated from the other sensors and a local component that cannot. The local component may be essential for failure evaluation where failure mechanisms depend heavily on localized state information. It is helpful to have a framework like QDOE in which such considerations are easily recognized and understood. 
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Well, if we’re calling it basic and intermediate QDOE, there must be advanced QDOE too. Figure 5 shows on one slide a basis for deriving something that allows using QDOE with nonlinear physics-based models. A system’s performance, as represented by the time variation of observable and desirable quantities, is simulated over some “threat spectrum” of interest. A linear descriptive model of the results then represents them to any desired degree of approximation. This simply duplicates the co-variation of different degrees of freedom as well as is possible within a given number of reduced dimensions. Surprisingly enough, this approach can provide near-exact results for a common source of nonlinearity. When the nonlinearity is due to contact closure or collision, the effect is to give rise to a contact force and to corresponding displacements. One can represent the effect of this force or displacement in a linear model by a pseudo-force or pseudo-displacement of suitable amplitude and spatial shape. Often one can find sensor locations sufficiently near the source of the nonlinearity to see its effects as a significant part of their signal, but sufficiently distant for this part of their signal to be linear in the pseudo-quantity. Adding the pseudo-quantity as a load case to be estimated (based on the predicted spatial distribution of its effects) permits its effects to be included despite the fact that the sensor model is linear. Even if the true nonlinear form of the pseudo-quantity is only crudely represented in the predictions for the threat spectrum, a surprisingly faithful reconstruction of the time history of the real pseudo-quantity can be obtained as long as the spatial shape of the effect is predicted correctly. This method looks like magic and can be very attractive to new users and to project managers. However, there are a large number of pitfalls in using it. Some are obvious and some are extremely subtle but still deadly. Anyone wishing to apply this would be well advised to find a user with previous experience. From a Bayesian point of view, one can see that it uses only a small portion of the information available (i.e., the “dominant” eigenvectors of the covariance matrix for the observables). 

Background on ship shock tests and pipe strain monitoring

Before moving on to the examples, we need to describe the context in which most of these examples are set — namely, the “ship shock test”. In World War II it was found that near‑miss explosions in the water would knock out many shipboard systems while the crew and the hull remained intact and serviceable. To name the most common problems: circuit breakers would trip, threaded pipe joints would break, brittle cast materials would fail, wiring harnesses with insufficient slack would tear loose, items would collide with adjacent items or structure, and so forth. The result of such minor damage could be loss of vital capabilities until steps were taken to recover. Similar minor-but-disabling damage was observed at much greater distances in nuclear weapons tests after the war. To prevent a “cheap kill” from shock, the Navy began requiring vital equipment to pass component shock tests. Equipment smaller than a few thousand pounds would be mounted on a loosely restrained table that was then excited by a controlled hammer blow. Larger equipment would be mounted on a floating test platform that was then excited by an underwater explosion. The test shock level was comparable to what would begin to incapacitate the crew. While many shock problems for individual components were found and eliminated this way, there was no way to represent all equipment and its shipboard surroundings in a component shock test. Two items that passed component shock tests individually might fail when interacting with one another on board ship. For this reason, the Navy began to do ship shock tests. They would take a normal ship out of its regular duties and instrument selected items. Then, with the crew aboard and systems operating as normally as possible for general quarters, they would set off conventional explosives underwater at carefully controlled distances from the ship. These tests began in the 1950’s and continue to this day, on ships of all sizes from mine sweepers to aircraft carriers. One of us (Chwastyk) was heavily involved in these tests, and in fact changed jobs from an engineering management role at the Naval Sea Systems Command to a research role at NRL in order to develop the possibilities of QDOE. These possibilities were revealed because of the nature of shock testing.

The problem with getting data from a ship shock test is that everything of interest happens quickly and at the same time. Most of the mechanical response (and direct failure) occurs within half a second. Whatever sensor data one needs to obtain has to be recorded with special shock test sensors, wiring, and recorders. When all the work of installation, operation, and restoration from a shock test sensor are taken into account, the average cost is about $10K per channel. This cost has stayed remarkably consistent for several decades, where the dollars are current as of the time of the test (i.e., productivity and technology gains have just about kept pace with inflation). Further, on average something like ten percent of the instrumentation has failed on each shot due to broken sensors, transient electrical effects, or recorder problems. The ship tests discussed here used from fewer than three hundred channels to more than six hundred channels of mechanical effects monitoring for the entire ship. Similar considerations apply to testing aboard shock test vehicles — ship-like but unmanned platforms in which major equipment can be tested to design level. Because of cost and resource limitations, only a relatively few high interest items on a ship or test vehicle will have many related sensors. In the case of high interest, however, some redundancy (over-determination) in sensor capacity has on occasion been judged warranted, and that has led to QDOE. 

In 1980-81 the Navy was preparing to monitor the shock response of some high-interest fluid system piping during a ship shock test. Piping traditionally does not pass the Navy’s Dynamic Design Analysis Method (DDAM) used for shock-designing key components, foundations, and ship structure. However, pipe configurations called unacceptable by DDAM typically showed no failures in ship shock tests. Long experience with ship shock tests, as well as some barge shock tests of piping arrangement features, had shown this. In fact, experience had shown that most potential shock failures of piping systems could be spotted visually by an experienced inspector on pre-test walkthroughs of the ship. There was a desire to better understand the actual shock response of piping analytically. In particular, the fact that piping did not fail on one test shot does not indicate the remaining margin to failure. One would like to know how close one came to failure before proceeding to the next shot, which is typically more intense. For one high-interest fluid system, the choice was made to heavily instrument two sections of pipe.

At the risk of being tedious, the term “heavily instrument” needs some explanation, at least in leading up to this first pitfall (later pitfalls will go faster!). In past tests, strain gages had been put on piping to indicate how much it stretched or compressed at the gage location. However, a single strain gage monitors only one of the three independent surface strain components at the gage location. Strain components 45° to either side of the gage axis can combine to increase, decrease, or leave unchanged the failure implications of the strain measured on the gage axis. It is necessary to put on a “rosette” of three gages at different angles to fully characterize the surface strain at one spot. Further, since a pipe is a three-dimensional object, as one moves along the length of the pipe or around the circumference the local surface strain pattern varies with position for the same global conditions on the pipe. Heavily instrumenting the pipe meant trying to infer strains not just at the gages, but even at spots on the pipe with no gages.

As a first approximation, a long straight pipe supported only at the ends can be treated as a structural beam. One can transmit only six types of static loads through a beam. These are axial force and torsional moment in the long direction of the pipe, and a shear force and a bending moment on each of the two axes transverse to the pipe. But what about dynamics, since this is a shock test? And what about pipe with elbows in it? Are more degrees of freedom required? In general, yes. Fortunately, it was possible to demonstrate that dynamic effects would be an order of magnitude smaller than the basic response that could be resolved with a static beam model. Elbow effects were neglected because of resource constraints. Internal pressure, while affecting the strain state of the pipe, was not expected to change appreciably during the shock transient. The effect of constant pressure was included, but no load case for change in pressure.

The First Pitfall: Pipe Loads I

In theory, one could use six suitably placed strain gages to resolve the six types of changing load on a pipe. In practice, because of the likelihood of losing some gages, it was decided to use nine gages per instrumented section of pipe. The contractor designing the test recommended placing the nine gages in three rosettes at spots on the pipe at 12 o’clock, 3 o’clock, and 6 o’clock around the pipe circumference. In each rosette, one gage would be in the axial direction, one 45 degrees away in what is called the positive shear direction, and one at right angles to axial, in the circumferential or hoop direction. Since the hoop direction is easiest to establish accurately during gage installation, gages are typically dimensioned by their angle from the hoop direction — in this case 0°, 45°, and 90° for the hoop, shear, and axial gages.

There seemed something disturbing about putting gages in the hoop direction. By the static beam response model with constant internal pressure, the only changing contribution to the hoop gage readings was a “Poisson effect” strain that would echo axial strain at lower amplitude and opposite sign; anything visible in the hoop direction should be visible more directly in the axial direction. Since a common problem was expected to be a glitch or noise in a single gage, some ad hoc numerical examples were run. These consisted of generating the gage readings for various known combinations of the six load cases, then adding an arbitrary error to the data from one gage at a time, and finally seeing how much of the error could be detected in lack of fit. It turned out that for the hoop gages, almost all the error showed up in lack of fit, with little change in the inferred load case amplitudes. For the axial gages, a small amount of the error showed up as lack of fit, with a larger change in the estimated loads. For the shear gages, however, absolutely no trace of the error showed up as lack of fit! Instead, the interpretation of the data changed to a different combination of the six loads that corresponded perfectly to the altered set of gage readings. After some thought, this seemed to make sense. Instead of nine independent gage readings, we had what the sensor model claimed were three independent shear gage readings and three independent axial degrees of freedom that were indicated by one axial and one hoop gage apiece. The only possible disagreement within the model was an inconsistency between an axial gage and its hoop gage. There was no consistency checking for the shear gages at all.

With the aid of such numerical examples, it was found that better performance would result from using rosettes with +shear (45°), axial (90°), and –shear (135°) gages. No perturbation of a single gage signal then would fail to produce a warning of lack of fit. Also, in the original design, loss of a single shear gage made the remaining gage response singular, or unable to resolve all six types of load. In the revised layout, loss of any single gage did not make the response singular. The first pitfall was avoided just by rotating some gages by 45 degrees. In a won-lost-tied box score for these examples, we would have been 1-0-0. 

The Second Pitfall: Gage Labeling

In 1983, the Navy received the results of a shock testing a massive, high interest component aboard a shock test vehicle. There had had been too much activity planning the ship test of the example above for the same individual to participate in the detailed sensor layout design for this component test. However, the fact that it was on a test vehicle rather than a ship permitted a large number of channels to be devoted to the component. (This is sometimes called the “shotgun” approach: since we don’t know exactly where would be best to take data, let’s take lots of it in what looks like a reasonably distributed arrangement and hope that when we need data we’ve got something close enough.) In this case, what was of interest for the multi-sensor model-fitting approach described above was that there were eighteen accelerometers in triaxial sets at six locations. The intent was to show that the massive, stiff portion of the component so instrumented would fit well to a six degree of freedom rigid body acceleration model. What attempts to fit the rigid body model showed, however, was a goodness of fit of thirty-three percent. This was disappointing. We had expected something near one hundred percent fit.

There was something in the data that seemed initially very disturbing, but which turned out to be very helpful. The Navy was able at the time to perform an optimal decomposition of the data into space-like and time-like patterns. This is variously called principal components analysis, Karhunen-Loève representation, singular value decomposition (SVD), or proper orthogonal decomposition, depending on the field where it is being used. This decomposition found that although only 33% of the total squared variation in the data could be accounted for by all six rigid-body patterns, more than 94% of the variation was accounted for by the first four SVD patterns. The SVD spatial patterns, of course, were decidedly unlike rigid body motion. 

After this was pointed out, the contractor was able to show that some 10 of the 18 accelerometers had been misidentified as to location (at which of the six points were they located), direction (e.g., forward versus up), or sign (forward is + versus aft is +). When this incorrectly labeled majority of the instrumentation was correctly labeled and re-fitted, the result was more than 98% rigid body motion. Had the Navy not realized that the data set was in fact fairly low-dimensional (but with the signal energy distributed along sensor patterns different than expected), it seems unlikely this problem would have been resolved. Since we were able to recover from this labeling error, let us call it a tie and say our record was 1-0-1.

The Third Pitfall: Pipe Loads II

In 1985, the same one of us was again involved in monitoring pipe loads and extrapolating strains to uninstrumented areas in another ship test. Earlier, we had been confident we had the axial location of highest strain and were concerned only with extrapolating around the circumference and through the depth. By the later test, we had found a four-station, eight-gage array that the contractors agreed had better performance than the earlier three-station, nine-gage array. Also by this time, we had developed the basic and intermediate stage of QDOE. This made sensor layout evaluation much more straightforward and understandable than the earlier ad hoc numerical examples. 

With this improved understanding, it was appropriate to test the effects of the actual piping arrangement (which had an elbow immediately adjacent to the gaged pipe section) on the simple gage response model that had been developed based on straight pipe. Accordingly, detailed finite element modeling of the pipe and elbow was performed to assess the worst strain response to the six types of loads. Small variations in pressure were also included to check their effect on gage response. As had been expected, the non-uniform stiffness presented by the elbow shifted the worst response out of the straight pipe section and into the adjacent elbow. Also, the finite element model gage response patterns were somewhat different from those for the straight pipe. The size of the difference was significant. If the straight pipe response model had been used to infer forces and moments at the pipe-to-elbow junction, and then the finite element model had been used to extrapolate out into the elbow, the extrapolations would have been in error by more than twenty percent. Pressure changes of a size consistent with past test observations, however, showed gage response very small compared to those from relative displacement.

An interesting point here is that because of modeling errors, we wound up with three slightly different sets of finite element model results. The first set was for a shell element representation that incorrectly used mid-thickness strains as outer surface strains. The second set was for a shell element with explicit thickness (inner and outer surface strain) representation, and the last set was for the second model with corrections to the areas effective for end forces from internal pressure. The interesting findings here were two: first, there was aliasing (misinterpretation of model loads) that would have led to significant errors in extrapolated strains; second, there was little warning of lack of fit, apparently due to low redundancy (only two redundant channels out of eight). Had we not seen the aliasing effects by performing different models, we would have been overconfident of how much a good fit ruled out a model error. The pressure effects, although dropped from the model, contributed an extra revision of the gage response with which to recognize how little warning of model error we would have.

Because we identified the aliasing problems before the test, we will count this as a win to leave us at 2-0-1.

The Fourth Pitfall: Gross Gain Errors

In 1987, on a third ship shock test, the sensor layout for one component provided fourteen accelerometers to be fit to a six degree of freedom rigid body model. In this test we were extrapolating rigid body motion from the sensors to a substantial distance away (somewhat further than the average distance between sensor locations).  The large number of sensors had been found necessary to get acceptable conditioning. Of course, it also gave us what we thought was comfortable redundancy (14/6 or 2.3:1).

On the very first shot of the test, we got marginal goodness of fit (84% compared to mid-to-high-90’s in earlier applications) and our extrapolated loads exceeded those for which the local team was authorized to proceed to the next (more severe) shot. There was no obvious problem with the instrumentation. After an off-site review of the data, headquarters approved a recommendation to proceed with the next shot.

Shortly after approval was received, the instrumentation agency on site informed us that they had found an unprecedented set of gain errors in the data they had given us. Even before we had told the instrumentation team that we were puzzled by the lower than expected fit of our data, they had been forming an independent impression of a larger than expected range of variability in other recorded data. With these two observations in hand, they were able to track through the calibration routines for a new type of recorder and find a subtle error. This turned out to be a spot that incorrectly ordered a digital-to-analog converter to zero output instead of ordering its output physically pulled to ground. 

The instrumentation team had been subject to Navy needs for more channels in a smaller recording space. The agency had gone to new solid-state digital recorders for this test in place of most of their traditional analogue FM tape recorders. They had been able to get a few of the new type recorders in time to field-test them on a previous ship shock test and to check out many features, including autocalibration accuracy, in their lab. They did not have time to perform extensive tests on a later shipment that constituted the bulk of the recorders installed for the ship test in this example. The difference between “virtual ground” and “physical ground” was negligible for the recorders received early, but large enough in the later recorders to affect subsequent gain calibration. Fortunately, the agency’s practice of recording as much information as possible during calibration provided enough data to recover the proper gains after the fact. For the fourteen accelerometers discussed above, the data had been reported high or low by factors ranging from 1.1 to 6.0.

When the correctly scaled data were fit to the model, the goodness of fit was 94% (up from 84%) and the extrapolated loads fit comfortably within local acceptance criteria. The effect of the gain error on rigid body motions was basically to alias some translation into rotations. This aliasing had little consequence when extrapolating back to the sensor readings. However, the further away the motions were extrapolated, the more the aliased rotations caused non-existent local translational acceleration components that increased the extrapolated local accelerations. 

We did not recognize the widespread gain errors initially by QDOE, but we were able to add to the instrumentation group’s impression that something was wrong, and the methods we were using let us quickly understand the effects of the error and recover from it. Let us call this a tie, leaving us at 2-0-2.

The Fifth Pitfall: Neglected Dynamics I

In 1992, the Navy decided to test resilient mounts on a floating shock platform (a sturdy, standardized test barge) to get realistic force-deflection histories under conditions as close to shipboard as possible. Resilient mounts (Figure 6) are actually used to control noise transmission, not shock. They consist of rubber and metal assemblies that can support and restrain the equipment under normal seaway motions while providing a low mounted resonant frequency and considerable material damping. Because the mounts are so soft, however, they would allow excessive displacement under shock, if they did not in fact just tear apart. To limit shock displacement, a snubber assembly (Figure 7) is used with each set of shear (cup) and compression (disk) mounts. One half of the snubber is a metal socket normally built into the soft-mounted (noise-isolated) side of the mount installation. The rest is a rubber-padded two-piece metal spool that extends into and through the socket and is held to the hard-mounted or foundation side by a through stud. Though simple, the snubber is an impressive piece of hardware, with the outside diameter of the socket being 14 inches and the diameter of the through stud 4 ½ inches. The spool and socket are sized to provide an air gap on the order of one-half inch on the diameter and three-quarters inch total in the axial direction, such that there is no significant force produced by the snubber when the mounts are in their normal travel range. Under shock, the rubber padding is squeezed between spool and socket and provides a large restraining force as it extrudes temporarily and elastically to less confined areas. The difficulty in obtaining realistic shipboard force-displacement history data comes from the fact that snubber forces get very large, on the order of 200K pounds force at less than three-quarters inch of engagement. It is hard to measure forces of this magnitude in tight shipboard arrangements, and difficult to produce them at realistic buildup/decay rates except by shock testing. Also, a single snubber is not a stable mounting arrangement, and mounts and snubbers are deployed in dense groups until there are enough of them in the right footprint for the component being supported. Given this arrangement scheme, it is hard on board ship to sort out the effects of one snubber from that of its neighbors.
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The test consisted of a 60K pound mass supported on a triangular layout of three sets of mounts and snubbers (Figure 8 shows the axial configuration, in which the snubber studs are vertical to put the predominant vertical force of the shock response on the flat faces of the spool). To make installation easier (as is explicitly permitted in shipboard practice), the snubber installations were inverted with the sockets on the hard-mounted side and the snubbers on the soft-mounted side. Instrumentation was minimal, just enough to directly measure three forces and three displacements per snubber, along with one force per compression mount, three forces per shear mount, and some mount and test fixture deflections. There was only minor redundancy in the force gages. First, the three forces for each snubber were measured using four instrumented stanchions supporting the snubber socket bracket (Figure 9 shows the radial configuration, where the vertical force of the test platform goes against the cylindrical face of the spool). Second, several accelerometers were arranged on the test mass as a “sanity check” and to provide backup in case the stanchion instrumentation didn’t work. There was more redundancy in the displacement gages, particularly in the vertical direction. The analysis of what accuracy could be expected from the sensor layout proceeded in parallel with test fixture fabrication.
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At one meeting during development of the instrumentation layout, it was pointed out that the heavy (2K lbm) snubber socket bracket would tend to produce large oscillating forces after the initial shock, as the bracket and its supporting stanchions formed a spring-mass system with the barge innerbottom and structure. A NASTRAN analysis to determine how severe the effects of this oscillation would be was rejected because its $50K cost was beyond the scope of the contract. Instead, it was agreed subjectively that bracket oscillations would quickly damp out due to the large scuffing friction expected with the snubber engaged.

One might have predicted that this subjective assessment would prove almost fatally optimistic. One might have, but none of us did. When the first shots were fired and we attempted to extract the snubber forces from the stanchion data, it became clear that bracket oscillations were so large and lasted so long that they completely obscured the first and largest of the snubber force “bumps”.  (The test mass bounces back and forth across the snubber gap about three times, giving a large force bump each time it squeezes the rubber.) Only the backup accelerometers on the test mass allowed recovering the snubber forces from the first bump. On the second and third bumps, the stanchion data “bracket effect” had quieted down enough to give beautiful agreement with the accelerometer data, confirming the usability of that data and our estimates of the accelerometer response matrix. On subsequent shots, some of the instrumented stanchions were disconnected to allow recording additional test mass accelerometer channels.

Had we made a quantitative simulation of the test dynamics before performing the test, it is probable we would have seen the problem and been able to avoid it. It seems likely that by moving the snubber force gages from the unisolated (shock barge) side of the snubbers to the isolated (test mass) side, we would have been able to show acceptable force monitoring response; no such calculation has been made. As it was, for the cost of five instrumentation channels ($50K) we blundered into a problem that made twelve stanchion data channels almost useless and very nearly made the entire test a failure. This is the one test where our application of QDOE failed us. We took the risk of accepting the subjective judgment that the bracket effect would not be significant, and we lost. Our record was 2-1-2 (we count this as a loss for QDOE, even though it did help the experiment succeed by confirming interpretation of the backup accelerometers).

The Sixth Pitfall: Neglected Dynamics II

In 1994, QDOE was involved in the larger test to which the resilient mount test above had been a prelude. Here the Navy was shock testing a large, resilient-mounted component. Test results were to be compared to time-history predictions from a transient shock analysis program that went “all the way from the charge in the water to the equipment in the ship”. Physics-based models predicted shock wave propagation through a large test pond, interacting with the water and a test vehicle floating in it. Modeled phenomena included direct shock propagation, reflections and precursors from the pond bottom and sub-bottom strata, and reflections from the pond free surface (with inverted vertical particle velocity and spalling or kickoff effects). Also included were the interactions of these shock waves with each other, producing bulk and local cavitation and reclosure, and the flows and dynamics associated with the oscillating, rising bubble of combustion products from the explosive charge. All this was done just to arrive at free-field fluid conditions on the wetted surface of the test vehicle. 

[image: image8.wmf]32

N

R

L

C

O

D

E

6

3

0

4

Snubber 

Test Bracket

A fluid-structure interaction coupled the fluid to a model of the vehicle structure to solve for the radiated and absorbed components of the fluid field, propagating the structural forces through the vehicle structure, the component foundations and mounting arrangements, and the components themselves. Despite all the uncertainties in getting the vehicle pressure history calculations, there were at least some conservation laws operating and considerable experience with the shock response of wetted surfaces and hard-mounted structure. There was not comparable experience in showing that the effects of resilient mounts could be predicted analytically. Accordingly, a major goal in this test was to record independently both the force histories and the displacement histories of a major component’s mounts and snubbers. If the particular force-displacement-history relationship assumed in the analysis turned out to be incorrect, having the force and displacement histories from an actual ship-scale test should offer a lead to better mount modeling.

Figure 10 shows the general arrangement of the test vehicle. The equipment of interest (on the left) consisted of several major sections sitting on a subbase. The subbase was supported by mounts and snubbers to two box girders, one on each side of the vehicle (only the near side girder was instrumented or is shown in the figure). These girders were welded into the top of a center tank built into the hull structure. The ends of the box girders were bolted to the tops of two other tanks built into the ends of the vehicle. Here the box girders were bolted with slip joints to avoid large axial loads into the end tanks.

Because of the way the snubbers were clumped between the subbase and the instrumented box girder, the forces and displacements of all the snubbers tended to look very much alike. These quantities were not independent and could be described with far fewer degrees of freedom than six times the number of snubbers (three forces and three displacements per snubber, the rotations and moments being taken as negligible). In fact, DDAM calculations showed only about eight significant patterns or modes of force and displacement. By applying 40 strain gages in various locations and directions on one box girder, it was possible to estimate the 8 DDAM force response amplitudes directly, and from there to estimate force components individually for each snubber. Similarly, some 15 displacement gages between subbase and box girder allowed estimating displacement pattern amplitudes which could be combined to give individual snubber displacement components.

The DDAM is only a linear analysis procedure, in which an average engaged snubber stiffness is used instead of the hardening-spring and hysteresis behavior characteristic of the snubber. The Navy insisted before the test on running the results of non-linear transient shock analysis through the data reduction method. This was done to check out how well the predicted snubber forces could be estimated based only on the predicted strain data and the DDAM sensor response. Of course, much of the motivation for doing this “direct checkout” was to avoid a repetition of our previous mistake in the mount test. The result was a surprise, as the shipyard’s most eloquent description of the results was “garbage”. The predicted strain data did not fit the sensor model well, and extrapolated snubber forces looked nothing like those from the transient analysis. What became apparent was that in the transient analysis, the hull is free to flex and bend under shock — and the box girder was experiencing major loads caused by motion of the three tanks relative to one another. Such loads are not included in DDAM, where all points attached to the hull are assumed to share the same motion and there is no relative motion between support points. Indeed, the hull force strains in the box girder were an order of magnitude larger than snubber force strains in the girder. The transient analysis showed the box girder acting more like a hull brace than an equipment support.

Even had we been interested in trying to estimate both hull forces and snubber forces from box girder gages, almost all the resolution of the gage array would have gone into estimating the large hull forces. We would effectively have had very few gages worth of information with which to estimate the snubber forces. Instead, we took the sensible way out and moved our forty strain gages to the subbase side of the snubbers. Here, the soft mounts isolated the structure from the hull forces flowing through the stiff box beam.

We found this potential sensor-disaster-in-the-making before running the test (in fact, just before scheduled installation of the gages involved). QDOE gave us just enough time to avoid putting the gages in spots that looked sensible by DDAM but not by transient analysis. This was a very big win for us, leaving us at 3-1-2.

The Seventh Pitfall: Which Gages Are Bad?
In 1996 the vehicle test was run. The displacement gage data had excellent fit to its model. However, the strain gage data had only about 85% goodness of fit, compared to 91% minimum acceptable established before the test. (One of the strain gage channels was lost, and the 91% figure was based on a 5:1 ‘signal to noise’ index, or mean fitted square six times the mean residual square, for a 25-pattern fit to 39 channels.)  There was the possibility that a few (say three or four out of 39) strain gage signals might be inverted or mislabeled, like what happened in 1983 in the second pitfall (where 10 of 18 were inverted or mislabeled, taking goodness of fit from 98% to 33%).

There is an approach called Andrews-Pregibon statistics in which k ( 1 observations at a time are deleted from the data (J. Roy. Stat. Soc. B-40, 1978). The geometric volumes (determinants) occupied by the k-deleted data are computed for all sets of  k out of n observations, and made dimensionless by dividing all k-volumes by the smallest such volume. Log plots of the results show an isolated value at 0 for k corresponding to the “right” number of outliers. For larger or smaller k, the point at 0 has more close neighbors. Unfortunately, for up to four sensors bad out of 39, this requires evaluating some 92,131 determinants without even addressing whether the “bad” sensors are just inverted or mislabeled. A similar technique, but with a different test statistic (and sequential, rather than combinatorial!) was developed. This technique showed that most inversions or permutations in up to four sensors could be unambiguously identified and corrected. This was something that had never been possible on a previous test. Application of this technique in this case showed that no combination of up to four inverted or permuted sensors could account for the low goodness of fit. This was a very useful negative result. 

Further, the technique identified a subset of three sensors which, if dropped completely, gave a fairly good fit for the remaining 36 sensors. Exactly how much the goodness of fit would improve would depend on how many SVD patterns were retained in the model. The results of the technique showed that something between 10 and 20 patterns gave plausible-looking force results. The higher numbers of patterns gave better completeness on the predicted data but also more susceptibility to model error (condition numbers were 33, 108, and 963 for 10, 15, and 20 patterns). At this point, after the likely candidate bad gages had been identified but before the reasons for the anomaly could be tracked down, project budget concerns caused further investigation of the sensor problems to be shelved. 

Because of the success at identifying the suspect gage set for further investigation, let us count this pitfall as recoverable by QDOE. This gives the standings for seven pitfalls as 3-1-3: three wins, one failure (when we made a subjective judgment not to take QDOE as far as turned out to be needed), and three recoveries.

A Comment on Validation and QDOE

In today’s modeling and simulation practice, there is considerable (and appropriate) emphasis on “VV&A”, or Verification, Validation, and Accreditation. Verification is ensuring that whatever conceptual model has been adopted for the problem, one’s code solves that conceptual model correctly (“solving the problem right”). Validation is the process of ensuring that the conceptual model is appropriate to the problem and purposes at hand (“solving the right problem”). Accreditation is the process of deciding the limits within which the sponsor is willing to accept a verified and validated analysis tool as representing the working of nature (with an accuracy and completeness sufficient for the purpose of the project at an appropriate level of risk). Verification is therefore the province of the physicist and numerical analyst, while accreditation is in the realm of project management. Validation is unique in that it is the only part of the process that serves as a tie to the physical world, with the prospect of identifying unexpected as well as expected phenomena. 

A powerful method of validation is to predict the outcome of an experiment and then to “compare” predictions with the results of performing the experiment in the real world. The validation experiment may have been performed in the past, or may require new physical excitation and response sampling, or be a mixture of both. We would hope that by now you will believe, as we do, that if there are any experiments for which the effort of QDOE is warranted, validation experiments have to be high on the list. 

Validation experiments by their nature have to sample the range of systems and conditions for which the project hopes to use modeling and simulation. QDOE gives the only quantitative method for setting this sampling in the context of the project’s state of belief and known uncertainties. Use of QDOE for validation experiments enables one to best assess the risks one faces in proceeding on the basis of one’s always-incomplete current knowledge. Failure to use QDOE for validation experiments amounts to gambling that pitfalls recognizable and avoidable with QDOE are sufficiently rare that the expense and effort of QDOE are unwarranted. Past experience with even the simplest experiments discussed above suggests this is a bad bet. 

No experiment can validate a model against all unknowns. The best a good experiment can do is give you a decent shot at reducing the known unknowns, and — with lots of redundancy —  let you extract indications of a few unknown unknowns from pure error. 

Closing Maxims

The time to reduce your data is before you take it.

Redundancy gives you a chance — not a guarantee — of finding your model doesn’t match nature. 

The only thing worse than finding your last experiment was inconclusive is finding out your last five experiments were (unknown to you) ambiguous and you took the wrong trail.

Confront and conquer your known unknowns. There will always be unknown unknowns for experiment to reveal.

Figure 1. Task sequence is important.





At the talk, this slide showed the Far Side cartoon by Gary Larson from the Off-the-Wall Far Side Calendar for 1/28/99, as reprinted by permission in Maximum Entropy and Bayesian Methods, Boise, Idaho, USA, 1999 (Kluwer Academic Publishers). To comply with copyright, this web form of the slide describes, rather than shows, the cartoon:

Three cowboys are in the street in front of a building whose sign says HOTEL.

The middle cowboy is sprawled in the dirt, his gun fallen next to his out flung arm.

The cowboy on the left is holding a smoking gun and saying, "OK, stranger... What's the circumference of the Earth?... Who wrote 'The Odyssey' and 'The Iliad'?... What's the average rainfall of the Amazon Basin?"

The cowboy on the right, his hands raised next to his face, is saying, "Bart, you fool! You can't shoot first and ask questions later!"
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Figure 2. Five parts of an experiment.
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Figure 3. The basics of QDOE fit on one slide.
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Figure 4. Intermediate QDOE showing aliasing and incompleteness.
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Figure 5. Basis for advanced QDOE fits on one slide (subject to cautions in text).
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Figure 7. Detail of snubber.



Figure 6.  Resilient mounts: Shear, compression, snubber

(shown inverted, socket on hard mounted side).
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Figure 8. Mount test layout on Floating Shock Platform.
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Figure 9. Snubber, bracket.
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Figure 10. Test vehicle with resiliently mounted components.





� This theorem, incidentally, is like the one that says you can’t get a unique solution to the matrix equation Ax = b if A is singular. That theorem leaves unstated another observation: even when A is not singular, the unique solution x may still be too unstable for practical use. The property of A that limits how much a relative error (A in A (or (b in b) gets magnified into a relative error (x in x is called the condition number c(A). If A is singular, then c(A) is taken to be infinite. If c(A) is so large that the solution is not useful, then A is said to be ill-conditioned. For the experiment to be useful, the excitation must be not just complete (c(A) not infinite) but well-conditioned (c(A) “small enough”).

What defines “small enough”? Well, when dealing with physical objects you don’t have exact knowledge of the excitation. Your prior belief should reflect not just the nominal experiment you think you are running, but also the uncertainties you have. Both the details of the test items (including their interconnections) and your ability to monitor and control test conditions are subject to uncertainty. It is not possible to estimate the size of your residual uncertainty or “pure error” unless you have some degree of redundancy in the excitation you provide. And yes, like singularity, it’s not just a question of non-redundant versus redundant — redundancy is multidimensional, and it is often its capabilities in the least redundant degrees of freedom that limit the overall adequacy of the experiment. In this smaller sense, then, despite your deliberate selection of what experiment to run, what actually gets offered to nature is in fact an excitation sampled from the uncertain region around your choice. The bigger the excitation error, the bigger the error in your conclusions, whether you are aware of the error or not. The uncertainty in excitation is “small enough” when the resultant uncertainty in your conclusions is small enough for the purpose of the experiment. Note that the size of the conclusion error can be estimated for modeled uncertainties (“known unknowns”) but not for the pure error due to factors missing from the model (“unknown unknowns”).

� As an aside, experience with the method has shown three main types of aliasing: (1) due to noise (part of multivariate noise will fall into modeled subspace), (2) due to tolerances on installation and performance of sensors (unknown misalignment), and (3) due to approximations or errors in the model. Model error aliasing tends to arise from using a simpler model than is appropriate (for one’s purpose!); it also arises from inadvertent neglect of a significant load case, or from an undetected blunder (such as mislabeling or inversion of sensor signals). The first two types of aliasing can and should be predicted before the test. The last type can be signaled by significant leakage of coherent signal into residual degrees of freedom. The more redundancy one has, the easier it will be to recognize and recover from model error aliasing.  
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QDOE: More Complex Exact Model
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Singular Value Decomposition (SVD)
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QDOE: simple exact linear model
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QDOE: More Complex Exact Model
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Partitioned equations for estimates at uninstrumented locations 
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