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Abstract

No matter which technologies or techniques a ubiquitous location sys-
tem uses, its measurements will have some amount of quantifiable error.
Unfortunately, error information is often conveyed arbitrarily or simply
for performance evaluation instead of as an online characteristic of system
behavior. Terms such as accuracy, precision, granularity, and resolution
are overloaded with various meanings. In this short paper, we argue that
real-time error distributions provide a concise quantitative summarization
of system accuracy and are useful in applications, simulation, and sensor
fusion.

1 Introduction

As we have previously advocated to the ubiquitous location-sensing community,
an error distribution can summarize a location system’s accuracy and precision
well [8]. An example is: “Using 5 basestations per 300m2 of indoor factory floor
space, location-sensing system X can locate 10 tagged objects per second to
within error margins defined by a Gaussian distribution centered at the objects’
true location and with σ = 3.5m.” Such a summarization is most likely a
minimum performance level (MPL) built from empirical studies of the location
system. An MPL has 3 fundamental components but may look quite different
for location systems built using different technologies:

1. Infrastructure Density – The number of necessary infrastructure ele-
ments per area or volume of space.

2. Location Rate – The number of objects per second that can be located.
The rate may be limited by the protocol overhead or the amount of avail-
able wireless spectrum.
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3. Error Characteristics – A gross summary function of the maximum
location error that may occur when locating objects.

An MPL summarizes overall system behavior more concisely than values
assigned to often ambiguous terms such as accuracy, precision, granularity, and
resolution. However, an MPL still says little about the real-time behavior of
the location system. A standard method is needed to capture and communicate
real-time error distributions. Section 2 explores several types of real-time errors
and how they can be related in a common framework. In Section 3, we illustrate
the value of real-time error information. Finally, Section 4 suggests a path to
adopting a standard for real-time error information in ubiquitous computing
applications and Section 5 concludes.

2 Real-Time Error

There are many sources of real-time location errors – errors that vary dynam-
ically from moment to moment depending on the state of the infrastructure,
environment, and mobile objects. We identify 3 real-time measurement errors
encountered by ubiquitous location systems.

2.1 Signal Propagation

Location systems often use wireless technology for detecting proximity or mea-
suring distances. Wireless transmissions are subject to the reflection and absorp-
tion factors of different physical materials. For example, infrared is attenuated
100% by any brick or plaster wall, but only 5% by glass; depending on frequency,
radio emissions are attenuated ≈ 10% by plaster walls. Reflective properties can
be similarly enumerated.

Location systems account for these dynamic signal propagation errors us-
ing an environment model. This model may be empirical such as the prebuilt
signal-strength measurement dataset used in the Microsoft Research RADAR
location system [2], or parametric such as Seidel and Rapport’s indoor prop-
agation equations modeling the effects of floors and ceilings on 900MHz radio
signals [12].

The result of environment propagation modeling, although representable in
a variety of ways, is a way to assign probabilistic uncertainty to individual
measurements, such as distances and angles, which are combined to compute
objects’ locations. This measurement uncertainty is often represented as a sta-
tistical distribution such as a Gaussian with the expected value, µ, equal to the
measured quantity and σ derived from the propagation model.

2.2 Time Variations

Time-of-flight distance measurements or time-stamped proximity readings re-
quire a certain precision and agreement about time. Since perfect synchroniza-
tion is impossible, time variations will introduce error into measurements used
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to compute objects’ locations. Fortunately, time variation errors can be modeled
with a distribution much the same way as signal propagation.

For example, in GPS, receivers are not synchronized with the satellite trans-
mitters and thus cannot precisely measure the time it took the signal to reach
the ground from space. Therefore, GPS satellites are precisely synchronized
with each other and transmit their local time in the signal allowing receivers
to compute the difference in time-of-flight – a quantity called a pseudorange
measurement. Four satellite pseudoranges allow the receiver to use linear least-
squares to solve a system of four equations (4 pseudoranges) and four unknowns
(X, Y, Z, and time) thereby incorporating timing errors directly into the total
error model. Refer to [5] for a summary of GPS theory and Misra et al. [10] for
a theoretical discussion of how errors combine to effect overall location accuracy
in the GPS system.

As we have seen, individual signal and time measurements each have a degree
of uncertainty and, assuming the proper models, it is possible to assess each
measurement’s uncertainty in real-time. Assuming a Gaussian error model, the
uncertainty for n measurements, σm, is computed as per Equation 1.

σm =

√√√√ n∑
i=1

σ2
mi (1)

2.3 Dilution of Precision

If location is computed using geometric quantities,1 the final location mea-
surement uncertainty σm derived from the propagation and timing models will
be magnified by a dilution of precision (DOP) factor, rms(location error) =
DOP ∗ σm.

DOP is a standard, unit-less quantity summarizing the quality of aggregate
geometric measurements. The most general form of DOP is Geometric DOP
(GDOP). GDOP is the proportional root mean square of the horizontal, vertical,
and time uncertainty as computed in Equation 2.

GDOP =

√
σ2
x + σ2

y + σ2
z + σ2

t

σm
(2)

Assuming the measurements m1 . . .mn are uncorrelated and have a common
variance (as would be the case for a least-squares location solution), it can be
shown that DOP is a function only of the spatial arrangement of the mobile
units and sensors. The volume of the shape formed by the unit-vectors from the
object to the measurement points is inversely proportional to the magnitude of
the DOP and higher DOP implies more uncertainty in the computed location.
Figures 1 and 2 illustrate low and high DOP situations using a hypothetical 2D

1Not all location systems operate geometrically. One incarnation of RADAR [2], and
various vision systems employ abstract scene analysis (for RADAR, in the RF rather than
visible spectrum) against a prebuilt dataset of non-geometric quantities.
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Figure 1: In this hypothetical 2D distance-measurement location system, low
dilution of precision occurs because the measurement points have good sepa-
ration from each other relative to the object being located – conceptually, the
area of uncertainty in the intersection is small.

location system based on distance measurements to 2 basestations. Again, [5]
and [10] contain a more detailed discussion of the computation and use of DOP
values.

We now have a formal method of computing the MPL mentioned in Section 1.
Given an arrangement of fixed sensors, a GDOP probability distribution can be
estimated by computing the GDOP of mobile units at regular locations in the
environment. Finding the configuration with the highest GDOP and σm yields
the location system’s MPL.

3 Applying Real-time Error Information

Real-time error distribution information is valuable in several ways.

3.1 Applications

Context aware applications can benefit from real-time error information. For
example, an application routing phone calls to handsets near a user may behave
very differently if it knows the user’s location is uncertain to 60m (σm = 20m
and GDOP = 3.0) then if the uncertainty is only 18cm (σm = 10cm and
GDOP = 1.8). The second case is probably close enough to choose a phone to
ring, while in the first case, the system may just take a message.
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Figure 2: In this hypothetical 2D distance-measurement location system, high
dilution of precision occurs because the measurement points have poor separa-
tion from each other relative to the object being ranged. The distance mea-
surement error is the same as in Figure 1, but the location uncertainty will be
larger.

3.2 Simulation

Trace logs of real-time error distributions can be used as part of a simulator’s
input. Prototyping location-aware ubiquitous applications using a location sys-
tem simulator provides a rigorous testing environment and potentially avoids the
monetary cost of purchasing, deploying, and configuring hardware infrastructure
when the goal is simply to evaluate the suitability of a certain location-sensing
system in building the application. Preliminary work on this idea has begun.
For example, Byland and Espinoza have built a simulator for a campus-sized
location-sensing system using a Quake III gaming arena [4].

3.3 Sensor Fusion

Sensor fusion is the use of multiple location systems simultaneously to form
hierarchical and overlapping levels of sensing to increase accuracy beyond what
is possible using any individual system. Real-time error information provides
the necessary pieces for fusing information by convolution of error distributions.
This approach is similar to the multi-sensor collaborative robot localization
technique of Fox et al. [6].

4 A Path to Implementation

We believe it is possible to adopt a method of conveying real-time error infor-
mation that is beneficial in a variety of location-aware ubiquitous applications.
Several issues deserve consideration.
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4.1 Standards

Communicating real-time error information is already a feature in navigation
system protocols such as the National Marine Electronics Association (NMEA)
standard 0183. NMEA 0183 is a voluntary standard adopted by device man-
ufacturers for interfacing navigation devices such as radars, chart plotters, au-
topilots, compasses, GPS units, and other such equipment. Modern GPS units
including hand-held units support NMEA 0183. NMEA 0183 is a serial mes-
sage passing protocol consisting of asynchronous “sentences” communicating a
variety of navigation information and control instructions. Several of these sen-
tences contain location error information such as timing drift and dilution of
precision.

It is quite reasonable to believe that similar voluntary communication stan-
dards could be adopted for the small-scale, indoor domain of location systems
for ubiquitous computing. Indeed, much like the data protocol of NMEA 0183,
ubiquitous computing systems such as one.world [7] and ICrafter [11] are often
built using asynchronous message passing architectures to allow for decentral-
ized operation and scalability.

4.2 Frames of Reference

A location system must adopt a frame of reference. GPS and marine navigation
devices employ the World Geodetic System 1984 (WGS84) model of the earth’s
shape and coordinate system whereas many ubiquitous computing applications
have their own ad hoc reference frames defined by a campus, building, room,
or other administrative boundary. Ubiquitous location systems could adopt
WGS84 or standardize a more complex method of referencing and converting
different reference frames.

4.3 Symbolic Locations

Ubiquitous computing applications are often interested in symbolic locations
(e.g. in the kitchen, near a wall display) instead of exact physical positions. Sym-
bolic information allows events to be generated when certain physical arrange-
ments or proximity situations occur. Yet symbolic location needs are sometimes
at odds with describing computed locations using geometric properties and real-
time error distributions. For example, the Xerox ParcTab infrared beacons [13]
have relatively high location uncertainty but are great for “find the room”-style
operations.

One solution used by the EasyLiving team at Microsoft Research is an
abstraction layer merging the real-time error distributions with an external
database of room volumes and geometric service regions of objects to obtain
relevant symbolic information [3]. In the distillation process, much of the error
may be eliminated or deemed irrelevant.
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5 Conclusion

We have shown how real-time error distributions can be an effective summa-
rization of location system accuracy and are useful in applications, simulation,
and sensor fusion. Our current work involves incorporating real-time error in-
formation to fuse several location systems including proximity sensors, RFID
tags, GPS, infrared beacons, and the SpotON Ad Hoc Location System [9]. In
addition, we are working on a method of querying the fused location model for
spatial and temporal object arrangements. Application areas we are investi-
gating include artistic expression, experiment capture in a biology laboratory
[1], and undersea exploration with large numbers of stationary and autonomous
robot sensors.
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