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Abstract

Keywords:

A new approach to the problem of estimating parameter in material models is
presented. The approach is based on a state space representation of the con-
stitutive equations and one step predictions. The differences between one-step
predictions and the corresponding measurements are used to design generic
one-step prediction error estimators, and in particular, the maximum likelihood
method is presented. The one-step predictions are computed through extended
Kalman filtering. Consequences of using a time dependent model with least
squares regression are analysed. It is shown that if the residuals are a sequence
of stochastic variables, correlated with the regressors, the parameter estimates
may be biased.

A Monte Carlo study shows that the model parameters of a Norton visco-
plastic model are estimated with up to 40% higher precision with the new ap-
proach as compared to standard least squares regression. An analysis of the
residuals clearly shows that the residuals of the new estimators form an inde-
pendent sequence of random variables.

material models, visco-plasticity, identification
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1. I ntroduction

One consequence of the increasing use of complex constitutive equations
is the numerous articles which have been published recently on estimation
of parameters in material models , see e.g. Courage et al., 1990, Mahnken
and Stein, 1996a; Mahnken and Stein, 1996b, Schwertel and Schinke, 1996
and Senseny and Fossum, 1995; Fossum, 1997; Fossum, 1998. Most of these
articles are based on statistical methods, primarily least squares regression, or
on methods derived from a minimisation of a cost function of some residuals.
The two approaches are similar, especially when quadratic optimisation cri-
teria are used. One advantage of the statistical interpretation of the problem is
that it provides an estimate of the goodness of fit in terms of the parameter’s
covariance. The residuals are defined as the differences between some pre-
dicted strain values and the corresponding measured strain values, assuming
the stresses, or at least the external loads, are known. Naturally, it is also pos-
sible to perform the identification with displacement control, predicting the
stresses instead of the strains.

The papers of Mahnken and Stein, 1996a, Schwertel and Schinke, 1996
and Fossum, 1997; Fossum, 1998; Senseny and Fossum, 1995 all treated ho-
mogeneous uniaxial conditions. Courage et al., 1990 and Mahnken and Stein,
1996b incorporated finite element calculations in the identification process in
order to handle multi dimensional problems. The work of Courage et al.,
1990 treat a hyper elastic material while the others consider time dependent
materials.

The majority of all estimation techniques relies on some assumptions about
the distribution of the data or the parameters. Deviation from this assumed
distribution may result in biased estimators, i.e. the mathematical expectation
of the parameter estimates is not equal to the true parameter values.

In this work, consequences of using a time dependent model with least
squares regression are analysed. It will be shown that when the residuals are a
sequence of stochastic variables, correlated with the regressors, the parameter
estimates may be biased. An in depth analysis of this problem and ways to
work around it is found in the book by Gallant, 1987.

A new approach will be presented, based on a state space representation
of the constitutive equations and one step predictions. It is inspired by res-
ults from time series analysis, see Madsen and Holst, 1999, signal processing,
see Jazwinski, 1970, and automatic control and identification, see Ljung, 1998.
The basic idea is to compute one step predictions of the strain values. The in-
tegration process is extended to perform a state update after each integration
step. This process is called state filtering, Jazwinski, 1970, and consist of re-
peating the following three steps. First, from the current state, the constitutive
equations are integrated to a new time instant to give the total strain. The pre-
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diction error is obtained by comparing the calculated value with the measured
quantity. Second, the statistics of the predicted variable are computed using
the dynamics of the constitutive model. Third, update the current state of the
constitutive model. The updating is based both the predicted and measured
values and their statistics.

In practice, the solution of the state filtering problem requires a few approx-
imations. Here, extended Kalman filtering, as presented by Wall and Holst,
2001, will be used. It is able to produce residuals with approximately white
noise properties. From the residuals, generic one-step prediction error estimat-
ors are derived. In particular, the maximum likelihood method will be presen-
ted.

The new approach will be compared with the least squares regression method
by Monte Carlo simulations.

Notations

A few notations will be introduced first. The measurements of strains are
taken at discrete time instances %, & € {0, 1, ---, N}. A subscript will
denote the time #;, of observation, €(#;) = €. A subset of the observations is
€ = {€;, €j_1, -+, €1, €} and €" denotes the entire measurement set. The
expectation of a variable will be indicated by a hat, @ = E[a]. Conditioning
of a on b will be denoted (a|b). The conditional expectation of g on €1 is
denoted €y, 1.

2. L east squaresregression

When using time dependent constitutive equations, the mathematical formu-
lation consists of differential equations. After employing a numerical method
to integrate these equations from time #,_; to time %, they can be written as

er = F(op, €4—1,0) (1)

with €, denoting the total strain at time #,, o is the stress and @ is a vector
containing the parameters of the material model. As ¢, is the variable which is
calculated from the model, it it also called the dependent variable.

In order to illustrate how disturbances may effect a least squares regression
estimator, it is assumed that the model is studied in an interval where a linear-
isation is appropriate. A suitable representation for regression is then

ek = [0k, er1][01, O2]" + wp ()

where the disturbance wy has been introduced to represent both model and
measurement errors. The strain recordings, the stresses and the disturbances
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are collected in matrices

€1 01 €0 wq
€2 02 €1 w2
EN ON €EN-—-1 wN

Here R denote the regressors. The least squares estimator is then
6=6,+(-R'R (Lrrw 4)
0N N

with @y denoting the true parameter value, i.e. the parameters which are gen-
erating the measured strain values. The estimator is unbiased if the expected

value
(1RTR>1<1RTW> =0 5

This holds if either the residuals uy, are a sequence of independent stochastic
variables or if the regressors are uncorrelated with the residuals. However, as
the value of strain at time #, depends on €;_; in time dependent models, the
residual at 3, depends on €;_;. The expectation expressed in equation (5) is
therefore not equal to zero and the parameter estimate will therefore be biased.

For problems with dependent residuals with stationary stochastic proper-
ties, Gallant, 1987 suggest a transformation of the variables to avoid the bias
problem.

E

3. One step predictions

In order to account for model uncertainties and measurement noise, the con-
stitutive equations will be written as a system of stochastic differential equation
on state space form

de'® = f (o, €°, 0, t) dt + dw €“(ty) € N(?—:iﬁ, Py),

ex = Me“(ty,) + Col(ty) + vg. ©
Here €’¢ denotes inelastic strain, € the total strain, o the stress and C' is the
flexibility matrix. The formulation reflects the facts that the evolution of plastic
strain is a continuous process and the measurements are taken at discrete time
instances ;. The state variables are written as vector quantities in order to
provide a more general framework for the present approach. The plastic strain,
€'®, can include several components of plastic strain as well as other hardening
variables. This requires multiplication of a gain matrix, M, in the calculation
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of the total strain. The gain matrix may also be useful when treating multi-
dimensional problems. Model uncertainties are accounted for by the process
noise increments dw with w being a Wiener process. Measurement noise is
modelled by the Gaussian process v. The noise properties are defined by the
covariances cov|[wy, w,| = Q(min(¢, 7)) min(¢, 7) and cov|vg, vi| = Ry.

One step predictions of the strain, Ele|Byg 1] = €gx—1 are calculated
through extended Kalman filtering. An algorithm has been derived by Wall
and Holst, 2001. The Kalman filter provides means for updating the prediction
of strain with feedback information from the measurements, i.e.

~te ~te

€tpralthrr — Ctprlte T K11 (ek-i-l - €k+1\k) . @)

For the details of computing K} 1, cf. Wall and Holst, 2001.

3.1 Estimators

The one step prediction error, corresponding to the one step predictor is
€x(0) = € — €pp_1- (8)

A generic estimator is obtained by minimisation of a cost function V' (8, €"),
defined as

N

V(G,GN) = %Zl(ék(o)aa)a )]

k=1

where [(-) is a scalar valued, positive function. A generic estimator is

6 = arg min V (0, €"). (10)
0

Under a few regularity assumptions, see Wall and Holst, 2001, the estimate will

converge to the true parameter value. According to a central limit theorem, the

parameter estimate is a random variable with

VN (9 — 00> — N(0, Pg). The covariance is +Pg = cov[6], with Pg

given by
! av®)\ (ove)\" -
) el (%) (%) | (%))

Py = (E
(1T1)

311 The conditional least squares estimator.  Setting the function
I(-) in (9) equal to [(-) = | - |? results in the conditional least squares estimator.
The parameter covariance can be calculated from equation (11).

92V (0)
06>

9%V (0)
06
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312 The maximum likelihood estimator.  The maximum likelihood
method is based on formal statistical inference and is a conceptually different
approach from minimising prediction errors. The likelihood function is the
probability of obtaining the measurements p(€"; @). The likelihood function
is
N
£(0,€V) =p(e";0) = ] plexle*™;0), (12)
k=1

where successive applications of the rule p(a,b) = p(a|b)p(b) have been used.
The conditional densities p(e;|€"~1; @) are recognised as the densities of the
residuals,

plexl€" 15 0) = p(ex(0)|€" ;) = p(Ex(8); 6). (13)

The maximum likelihood estimate is obtained by maximising the likelihood
function (12), or equivalently, minimising the negative logarithm likelihood,
011, = arg maxg L£(0, €V) = arg min, (—log £(6,€M)).

When the residuals are assumed to be stationary Gaussian with covariance
matrix R, the density function of the residuals is

. B 1 1l 1 >
p(ekae) - (27T)m5/2\/deTR eXp( 2614: (0)R ek(e) ) (14)

where m, is the dimension of €;. By using the asymptotic relation
1/N ZQZ €x€ — R, the log likelihood function can be rewritten

N 1 Nm
- T ¢
log £ = > log det <_N kg lek(0)ek (0)) + 5 (1 +1log2m) (15)

when R is unknown.The parameter’s covariance is calculated as cov@ ML =
M 1| ,_p with the Fisher information matrix M defined by

(a% log p(e™; 0)) (a% log p(e™; 9)>T]

= -E [8—2 log p(e™; 0)]

M=FE

0=60  (16)

06°

0=0,

The Cramer-Rao inequality states that the covariance of a parameter estimator
is cov[f] > M ™!, Ljung, 1998. If the covariance takes the lower bound of the
Cramer-Rao inequality, the estimator is said to be efficient. If there exists an
unbiased efficient estimator, it is the maximum likelihood estimator, cf. Wall
and Holst, 2001. For the stationary Gaussian case, the Fisher information can
be computed through equation (15).
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4. Results

The theory presented above has been evaluated with simulations of a gen-
eralised Norton model suitable for transient loading problems, see Wall, 1998.
The primary goal has been to compare the one-step prediction approach to
standard regression. A block diagram of the evaluation setup is shown in fig-
ure 1.

Measurement
. . noise
Simulation i w(t)
o) i
Stress
history
o(t)
% de™ = f(o,€™,0)dl EStY i
Process n dw(t) Imation
noise Minimisation of 0
€ty €1, ‘dual
ezein+g SH I'CSI uaS —————
0, E train Kalman filter
’ ’Utk
Measurement 5
noise R Qo

Figurel. The setup for evaluating the estimator. The estimated parameters 6 should be equal
to the true parameters @y which is used for generation of the data.

The statistics of the added noise processes is given by (w, — wy,_,) €
N(0,Qy), vi, € N(0, Ry) and (wy, — wy,_,) € N(0,€), as the Wiener pro-
cesses produces Gaussian increments between two time instances. The outputs
from the simulations are then used as inputs to the estimator. The parameter
estimator also requires knowledge of the noise properties, which are given by
QL and RY. The result is the estimate of the parameters, @. The estimator
was found to be sensitive to high frequency noise in the stress signal and there-
fore, it was pre-filtered by a linear phase low pass filter before estimating the
parameters.

The solution of the estimation problem is obtained optimisation. The Gauss-
Newton method has been used successfully here, cf. Fletcher, 1987 Both the
simulation and the estimation require numerical integration. An explicit fifth
order Runge-Kutta method was used with a convergence criterion with an ab-
solute tolerance of 10~ for the inelastic strain.



The uniaxial constitutive equation for the Norton model is

o (h(eie)n-i_g ) ’ : ie\n
0 if o < (h(€")" + oy)
a7)

Isotropic hardening is controlled by the hardening parameters A and n. The
time dependent, viscous, properties are governed by « and . The paramet-
ers were chosen to represent a structural steel, with Young’s modulus £ =
206GPa, an initial yield stress o, = 413MPa and the hardening paramet-
ers n = 0.8 and h = 500MPa. The viscous parameters were ¥y = 2 and
no = 10MPa. Curves of stress-strain without any added noise are shown in
figure 2. It can be seen that the model responds nearly rate independent at the
lower strain rates. The strain hardening parameters h and n can therefore be
found by ordinary least squares regression from the low rate response, leaving
only the viscous part to be identified by the conditional least squares method.
The benefits of splitting the problem into one rate independent, static, part and
one viscous part are faster and more robust computations. Hence the unknown
parameters are @ = [y 7).

Ljung, 1998 discusses the choice of suitable sampling time, and suggests

-1
T=t,—tp_1= —% (minimum eigenvalue of ( az{e )) . At the maximum
strain rate, which is expected to be at most 1(° s~ ! and the approximate in-
elastic strain is 0.1, the sampling time should be less than 7" = (8000) 's. The

model was simulated at three different strain rates, ¢ = [10F, 102, 10%]s L.

1} 3
- de/dt =10
o 102
08 de/dt = 10
_ - — . de/dt =10
a9 - _ —
5 06l derdi=1
a | . de/dt=10
I -2
= 04 - - defdt=10"
-~ de/dt=10"
ook — de/dt=107""
0 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 Strain

Figure2.  Simulated stress-strain for the generalised Norton model for transient loading.
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At the different strain rates, the sampling interval was chosen as 7' = [1074,
1075, 1075]s.

A total of 1500 points which were used for each parameter estimate. 200
different parameter estimates were calculated. The mean values and their stat-
istics are shown in table 1. It can be concluded that when fairly correct noise
statistics are supplied to the estimator, the conditional least squares estimator
has a higher precision than the least squares regression estimator. For the latter,
the precision is between 40% to 60% worse. Using the wrong noise statistics
in the conditional least squares estimator, as in cases 1 and 2, results in de-
creasing precision. When noise is added to the input signal, cases 9 and 10,
these differences become less pronounced. In the cases of high process noise,
cases 7, 8, 15 and 16, the model represents an inaccurate description of the
material to be identified. In these cases, the conditional least squares estimator
sometimes, about 10% of the investigated samples, failed to find any parameter
estimates whereas the regression estimator always succeeded.

A sample of the residuals from one estimation is shown in figure 4 with
noise statistics corresponding to case 5. The conditional least squares estim-
ator produces uncorrelated Gaussian random residuals. The residuals from the
least squares regression estimator, on the other hand, illustrate that the the re-
gression estimator cannot deal with measurements which drift away from the
model outputs. Further, the residuals deviates slightly from the Gaussian dis-
tribution but the distribution is, however, symmetric. The parameter estimates
is therefore probably rather reliable.

Time[ms]

Figure 3. A typical strain output from the simulation of the generalised Norton model for
transient loading. The curves represent loading at three different speeds, and only one tenth of
the slowest curve is shown. The noise statistics corresponds to case 5 in table 1.
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Noise characteristics AcLs YLsQ flcLs LsQ
Ni
° Q{f Vv Qo Vv Ro mean std mean std mean std mean std
1 0.0025 2.00 0.002 2.00 0.001 9.96 0.03 10.0 0.02
0
2 0.005 2.00 0.004 2.00 0.002 9.96 0.06 10.0 0.04
0.001
3 0.0025 2.00 0.029 2.00 0.043 10.0 0.37 10.0 0.60
0.001
4 0.005 2.00 0.025 2.00 0.040 10.0 0.33 10.0 0.57
5 0.0025 1.99 0.069 1.99 0.11 9.97 0.86 9.97 1.45
0.0025 0.0025
6 0.005 1.99 0.073 1.98 0.11 9.91 0.87 9.80 1.45
7 0.0025 1.92 0.27 1.98 0.25 9.89 2.81 9.75 3.34
0.005 0.005
8 0.005 1.94 0.22 1.94 0.23 9.74 2.38 9.30 293
9 0.0025 2.01 0.012 2.00 0.010 10.1 0.19 10.0 0.17
0
10 0.005 2.00 0.013 2.00 0.010 10.1 0.20 10.0 0.16
0.001
11 0.0025 2.01 0.033 2.00 0.044 10.2 0.44 10.0 0.63
0.001
12 0.005 2.01 0.029 2.01 0.041 10.1 0.39 10.1 0.58
13 0.0025 2.00 0.070 1.98 0.11 10.1 0.89 10.0 1.74
0.0025 0.0025
14 0.005 2.00 0.074 1.99 0.11 10.0 091 9.83 1.46
15 0.0025 1.93 0.26 1.98 0.26 9.89 2.75 9.78 3.35
0.005 0.005
16 0.005 1.95 0.21 1.95 0.23 9.86 2.30 9.34 2.96

Tablel. Theestimates of the parameters for a generalised Norton model for transient loading.
The first eight cases were performed with © = 0 and cases 9 to 16 with @ = (0.020')*. Each
estimation was performed with one time series each at the strain rates ¢ = [10, 107, 10%]s™!.

5. Summary and conclusions

It has been shown how the use of ordinary regression for parameter estim-
ation in dynamic models may result in biased estimates, A one step predic-
tion error approach for the problem of identifying material models has been
presented, from which a family of estimators can be derived. The presentation
has been accompanied with expressions for the variance-covariance matrices
of the estimators. The maximum likelihood estimator is statistically efficient
and it offers a flexible framework to handle residuals of any distribution. For
Gaussian distributed residuals, the maximum likelihood parameter estimator is
similar to the conditional least squares estimates.
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Residuals Residuals
0.04 0.04
0.02 0.02
-
—0.02 —0.02
-0.04 -0.04
0 500 1000 1500 0 500 1000 1500
Normal Probability Plot Normal Praobability Plot
0999 | ] 0.999f
0.99 : : : 0.99 : g

0.95 0.95
0.75 0.75
0.50 0.50
0.25 0.25
0.05 0.05
0.01 0.01
0.001 0.001

-0.01 0 0.01 -0.04 -0.02 0 0.02 0.04

x 107 Autocovariance x 107 Autocovariance
25 25
1.5 1.5
1 1
0.5 0.5
0 0
5 10 15 20 25 30 5 10 15 20 25 30
a. Conditional least squares b. Least squares regression

Figure 4. A comparison of the residuals. They were generated with noise statistics corres-
ponding to case 5 in table 1.

A comparison between a traditional least squares regression estimator and
the one-step prediction approach showed that the new method produces more
accurate estimates and uncorrelated residuals. The precision increased up to
40% when used with a generalised Norton model in transient loading.

The one-step prediction estimators require that the noise statistics is known.
The improved precision may be wasted if the wrong noise statistics are sup-
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plied to the estimators. In a more advanced implementation, it is possible
to estimate the noise statistics simultaneously with the one step predictions,
see Madsen and Holst, 1999.

When stress-strain data from a real structural steel were analysed, it turned
out that the least squares regression provided more consistent results than the
conditional least squares estimator. This was probably caused by inaccurate
constitutive equations. The one step prediction approach seems to be sensitive
to inaccurate constitutive material models.

Further evaluation of one step prediction error estimators are found in Wall
and Holst, 2001, which includes both various levels of excitation as well as
models for high temperature creep.
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