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Abstract. In this work we present a unified strategy for identification of material parameters
of visco-plastic madels from test data of complex structures. For consideration of the assaciated
inhomogeneous deformations and stresses the finite-element method is used. The objective
function of least-squares type is minimized by a method based on gradient evaluations, such
as an sQp method or a projection algorithm due to Bertsekas. The sensitivity analysis, ie. the
determination of the gradient of the objective function, is explained in detail. As a resuit a
recursion formula is obtained. In the numerical examples we compare gradient-based methods
with evolutionary methods for homogeneous problems. Concerning inhomogeneous problems
we discuss the results obtaned for a material law due to Steck.

1. Introduction

The development of material laws for modelling of elasto/visco-plastic deformations consists
of both the development of a mathematical model and the determination of material-
dependent constants. The identification of these parameters from experimental data requires
the solution of inverse problems. So far only uniaxial experiments (see e.g. [7])} have
been considered for this task, ie. field equations have not been taken into account.
For minimization of the corresponding objective function stochastic methods such as the
evolution strategy [14] are usual. These methods can easily be implemented; however, in
general they lead to a long CPU time because of the large number of function evaluations
{several 100000).

The approach in our paper is twofold. Firstly, complex structures such as a plate with a
hole are taken into account for determination of the material parameters. Thus plastic and
visco-plastic features including hardening are activated by deviatoric stresses. Qunly in this
way is a general verification or falsification of a material law possible. The incorporation
of inhomogeneous stresses and strains requires the solution of field equations. For this task
the finite-element method (FEM} is used. For time integration of the evolution equations we
use the second-order mid-point rule.

Secondly, for minimization of the objective function of least-squares type a method
based on gradient evaluations is applied. The specific algorithms are an 5QP method [13]
or, alternatively, a projection algorithm due to Bertsekas [2]. In order to determine the
gradient of the objective function a sensitivity analysis has to be carried out.
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2. Formnlation of the direct and inverse problems

Let R? be the Euclidean space, and let Z = [0, T'] be the time interval of interest. The
object of our investigation is a body B. Let € C R> be the reference placement of B with
smooth boundary 3€2, then any material point P € B is defined by x(P) € £2. The static
equilibrium equation is given by

dive; + pb=0 tel, z e (1)

where o, denotes the symmetric Cauchy stress tensor, and pb is the body force (e.g. the
gravity force). As usual we assume

a0, ViR, =382 92, NAQ, = 0. @
We shall denote by @, the prescribed boundary displacement on 3$2, and designate by Z

the prescribed boundary traction vector on 8. In a geometric linear theory with small
strains the total strains &, can be derived from the displacement u, according to

g = 1/2 ((grad u,)T + grad u,) 3)
and we assume an additive split

g = e + el (4)
The elastic part is given by

ed =Cg, (5
where

C=2ul+1121 6)

is the elasticity tensor with the Lamé constants p and A. Observe that the preceding
equations are linear. The source of non-linearity in our problem arises from the type of
constitutive equation that relates the stress field and the displacement field as discussed
below.

The inelastic part in equation (4) results from the set of evolution equations

é'?!=f(ﬁ;a':,‘1'zat=---) (7)
Q'r = f(ns Try QIstv"') (8)
where g, are so-called internal variables and x € R™ is a vector of m material parameters.
It follows that both C and &£, q; are functions dependent on material parameters £ =
(1,00 km]T.
As an example of a material law the stochastic mode] due to Steck with seven material
parameters and one internal variable is given according to [7, 16]

&0 = 3glan, ®
1+1/k
s _ 3/ ezl b ( 2V _f
g = A'crexp [ (1 - RT) :1(2 sinh ( RT Oyt exp RT (10}
. 1., alp — BF,
Fi= Lo crenp [ _ -—RT—} ()
= s, (12)

Tyt

Oyt = 4f %-‘3: * 8 (13)

S;=(l"“%1®l)0} (14)
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where A', AV, ¢1, ¢, &, B, k are material parameters, R is a gas constant and F, is an internal
variable for isotropic hardening.

For complete description of the initial boundary-value problem we assume the initial
conditions

u{t = 0) = ug gt =0 =qo o(t =0) = oy. (15)

Let Y be the parameter space, and let I/ x Z be the solution space for the displacements of
the above initial boundary-value problem. Thus, for a specific sef of parameters & € Y, it
is possible to solve the corresponding direct problem

K (K) (16)

in a forward calculation. In introducing a solution operator, the corresponding surjective
mapping is denoted by

N AR A
S‘{y—->ux1. an

Let &, € P x I denote given data e.g. from experiments. Then, in general, it is not possible
to solve the inverse problem

find & : w, (k) =1, forgivenu, e Px7T (18)
in a backward calculation. Basically, there are two reasons:

. In general i x I # P x I, i.e. the data space cannot be ‘reached’ by S.
2. There exists no unique operator ! of S.

Problems of this kind are called ilf posed problems or Hadamard problems (see e.g.
[6, 91). Therefore the backward calculation is replaced by an optimal approach strategy,
where the solution vector w,(x) should be as close as possible to the given data @, in a
certain sense. This requirement is expressed by the optimization functional

Fg) = llw(r) — tlluxs — Ir?elifl (19}

Here, the specific weighted norm on if x X has to be chosen. For instance, in order to take
into account the dispersion of measurements, one can implement a dispersity function as a

weighting function. Taking an || - ||z,-norm (without weighting) leads to the least-squares
functional
T
fiw) = f f (uy () — ;)2 dzedt — min. (20)
0 Jo Key

Such problems are characterized by the non-convexity of the objective function f and
improper conditioning of the Hessian of f(x).

3. Solution of the direct problem

3.1, Discrete formulation and solution strategy

For solution of the time-dependent direct problem (16) the balance law (1) is multiplied
with test functions 73 of an appropriate Hilbert space

V= [n e(H'@)YIm=0 on asz,,,] @n
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and the result is integrated over the domain 2. Finally, application of Green’s theorem
leads to the weak form of equilibrium

g(a,,n):fa,:gradndv—fpf)-ndv—f tomda=0 tel. (22)
Q o i,

Note, that in view of a finite-element displacement method the stresses o, are defined to be
dependent on the displacement field ., ie.

o, = o(uy) tel. (23)
Let
NE
a=|J (24)

define the discretization of £2 into N E finite elements, and let u, ; be the approximation of
u;, where 1w, = NV; € V, € V, N € V), are shape-functions, and V; is a vector of nodal
displacements. Thus from equation (22) the condition for equilibrium

R(V,.)_U fBT (V) d2 — UfNprdQ+fNTt,aQ =0 tel  (25)

aq,

-

v

R (VE) P

is derived, where B is the strain—displacement matrix in standard notation.

For determination of the displacements V; and the stresses &(V;) an incremental strategy
is necessary. Let N be the number of time steps Alys; = 1 — e £ =0,..., N =1,
th=0,ty =T, and let

A‘/k-l-l:v;:-{-l_w k=0,....,.N—1 (26)

be incremental displacements. Then equation (25) is replaced by

NE
Ren(@Via) = [ BTV a2 - U f NTobdsz+ [ NG00 L0
e=1
. aa,

. - [ i

Ri (AViqn) Pk+[

k=0,...,N—1. (27)

The unknown stresses 6 (A V) are obtained by time integration of the evolution equations
(7) and (8) with respect to the basic equations (3)}~(5) at any Gaussian point @, ig =
I,...,Ng. Let

o1 = G(AViy1) (28)
then, by use of a mid-point rule the following equations are obtained:

Atippsr = Ay iy + AR 4y (29)
Qig i+l = Qighk + BGig k] (30)
ig=1,...,NG k=0,....N—1
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with
Agigr1 = B AV 3D
AE?;.J:H =C (o —o igk) (32)
Ael o1 = A1l g (Gig ke, Gigir1) (33)
At = Ay Gigi1yz (Tigpets Qg k1) - (34)

By definition of a vector of process variables Yig 41 1= [a',-g,k.;.l, q,-g,k“], by multiplication
of equation (29} with the elasticity matrix, and by use of equation (30} we thus can formulate
the following non-linear system of equations for any Gaussian point ;.:

ges i
G(Yig+1) 1= [ o ] = [ A1 = Tigks + gl — Chcig ] L (35)
2 Qigir1 — Qg — AGig 41

ig=1,....NG k=0,...,N -1

For solution of the direct problem in discretized form, basically, equations (27) and (35)
have to be solved. The definition (28) for the displacement Vi as independent variables
and the stresses o as dependent variables implies the following solution strategy: the FE
analysis contains an outer loop, the global iteration for determination of V.1, and an inner
loop, the local iteration at any Gaussian point for determination of the process variables

Cigk+1 and Gig py1.

3.2. Local iteration

To simplify notations the index ig will be neglected in this section. The aim of the
local iteration is to determine the process variables Y. = [U'k+lrQ'k+1] for given
Agp = BAV, such that equation (33) is satisfied. By use of a Newton method the
iteration scheme is defined as

Y = Y, - o/ TG (Wig) (36)
where
3G (Yir1)
J=—" 37
Y ©7

is the Jacobian of G(¥%.1). In the case of the material law of Steck, the result for J is
given in subsection A.l of the appendix.
We make the following remarks.

1. The process vector Y4 consists of values of different size. Therefore it is necessary
to scale the system of equations. In our program scaling was carried out with the diagonals
of the Jacobian JY=0), '

2. In order to achieve global convergence, a line-search parameter o/ is determined at
each iteration step. For this we require that the merit function ||G|| decreases at each iteration
step j (Dennis and Schnabel in [3]). However, sometimes numerical tests showed very small
values for @, thus slowing down the convergence. Therefore we applied a modification of
Grippo et al [5], where every K steps cycles are introduced into the iteration scheme, in
which no line search is done or a different merit function is used (for further details see
{51

3. The special case of a plane-stress problem can easily be implemented in an existing
code, if the process vector is defined as Y41 := [O:x'](.i..lo'y‘k_{_lfj(.{_], Asz,k+1qk+l]T.
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3.3. Global iteration

The solution of equation (27) is obtained according to

AV = AV, - JIKIDT'R], (39)
where the Jacobian of the residual vector
AR 15 f dossy
Kr=— = BT —BdQ 39
T dAVi e, dAen )

is known as the consistent tangent matrix. Therefore the term Cy; = doy/dAgy has
to be determined. In view of the fact that both the stresses o;4; and the internal variables
depend on A, a condensation of g4, is done as follows. We begin with the definition
of an implicit function {compare the local iteration)

g1(Aggs1) = CAepyy — Oyt + 05 — CAER,, =0 {40)
= g1 (A&ry1, Ok41(AC41)s Qus1{ACK)) (41)
=: 91 (A€p41, Trt1 (A&k41)s Ges1(T i1 {AEL1))) 42)
=: g1 (A&ks1, Opp1 (D)) (43)

The total differential of g, is given by

d£=i'1 — 35’1 351 doiss - (44)
dAgpy  0Agry 004 dAgy
Thus the unknown term is found to be
= -1 =
dore l: 29, ] ag,
okl 45
dAgg4 8041 dAELs @)
where
g g g 3g, d
8g1  _ c 89, _ 8 g1 %1 46)
0AERy 3okp1 0441 OQi4 Okl
For determination of dgp.1/dogy we define
g2 = Gry1 — Gk — Ay 47)
=: 2 (Ors1, Qr1(Trs1)) (48)
and we deduce
dgess _ [ 8g2 r 352 “9)
dors et OOk41

To summarize, for the determination of Ky

1. The partial differentials of gy and g, with respect to the process variables o1, Q41
(i.e. the Jacobian in the local iteration) have to be provided,

2. The internal variables g4, are condensed, and

3. The special case of plane-stress problems can be treated by further condensation.

The result for Cy in the case of the material law due to Steck is presented in subsection
A.2 of the appendix.
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4. On solution of the inverse problem

4.1. Discrete formulation and solution strategy

We assume that experimental data at points &, € Q, p = 1,..., M P for discrete time
values #, k = 1,..., N are given. Thus a possible function for the inverse problem can be
as follows:
MP N )
F=2_> IVip — Vipl?* ~> min. (50)
p=1 %=1

Additionally, equilibrium conditions have to be satisfied. From equation (27) of the direct
problem we deduce the following constraints:

Rk, AV)) =0  k=1,...,N. 51)

Further constraints for the material parameter # (e.g. conditions between the material
parameters, upper and lower side constraints) shall be denoted by

hi(r) =0 (52)
hy() < 0. (53)

Thus equations (50)~(53) define the non-linear optimization problem for the inverse problem
in discretized form, where (k, AV, k= 1,..., N} is the set of unknowns. In general this
problem is characterized by its large dimension. Note that the above type of problem is very
similar to problems in structural optimization (see e.g. [1, 11]). For this kind of problem
the following solution strategy is snitable.

For two reasons it is advisable to separate a finite-element calculation for solution of
the direct problem from the optimization process.

o The existing finite-element code for solution of the direct problem should not be
changed too much.
» In general dim(k) <« dim(AV,, k=1,..., N).

The separation is possible via the following definition.

o The material parameters are independent variables. )
o The displacements are dependent variables, i.e. AVy; = AVi(k), k=1,...,N.

The resulting optimization problem is given by

Flr, 2(8)) — min,
hi(e,z(k)) = 0 (54)
hZ(Rs 33(»‘6)) S 0

where z(k) 1= {AV,, k=1,..., N} is defined to be the solution of the direct problems
Rys1 (R, AV (k) =0 k=0,...,N-1 (35)

for given (frozen) & in a finite-element analysis.

It can be seen that the above strategy reduces the dimension of the optimization problem
significantly to dim{«). However, it should be noted that the functions of interest depend
on & both explicitly and implicitly.

As a practical consequence it follows that in an optimization process on solution of the
problem (54} a complete non-linear finite-element analysis has to be carried out for any set
of material parameters K.
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Optimization algorithms for problem (54) can be classified into methods which use
only function values (e.g. the evolution strategy) and methods which use function values
and gradients (e.g. the SQP method according to Schittkowski [13] or a projection algorithm
due to Bertsekas [2]). Since in general the first kind of method is not efficient due to the
large number of function evaluations the second kind will be used. Therefore the gradient
of the objective function has to be determined in a sensitivity analysis.

4.2, Sensitivity analysis

For explanation of the sensitivity analysis the following objective function shall be
considered:

Flwy = ZZ]WIP(m) - Vi,l% (56)

i=1 p=1
Thus the gradlent is given by

22 Z(w p () — (57)
i=l p=
N

2220& p() — .p)Z dAV"*‘ e (58)
i=1 p=1

where in equation (58) we use the fact that the displacements are the result of an incremental
step-by-step calculation. Next, for simplicity of notation we shall neglect the indices i, p.
We start with the implicit function (55). The total differential is given by

R 3Ry |, 8RR dAVRy

= ={
ds oK 3A Vi de 59)
e
Kt
and solving this equation for the unknowns yields
dAvV, 13
k+1 - _ [KT] 1 R&k+l. (60)

dw LT
For evaluation of equation (60) it has to taken into account, that a factorization of Ky is
available from solution of the direct problem [1, 11]. Now it remains to determine the
partial load vector

3Ry NE[ 1 o1 '
b’ L R — a0,
S 8L=J1 MLt ra (61)

For this task a similar procedure as for determination of Kr in equation (39) can be applied,
i.e. the internal variables are condensed. Again, the basis is an implicit function

g1(k) = CAgyyy — 01 + 0 — CAEy; =0 (62)
= g1 (K, Qu+1(K), Trs1(K), Yi(K))
= : gi{K, @Gr1(R), Or41(K), Gri{oii(r)), Yi(x), NI A))
= 1§ (K, Tr1 (%), Ya(K))
where the total differential is given by
49 _ 3g: , 3G 4Yi , 89, doww
ds ok Y, dr  dopy dr

=0. (63)
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Solving for the unknowns yields
-1

d 33 ag, g, dY,
ol g 99 | °91 Lk (64)
dr tels SO0 ak 3Y, dk
[ St et S’
1 2 3 4
with
Term 1 : 3.‘31 _ 84 0g1  dgeyy

30141 30kt 3Qkyr Aot
[
5

33, 0g 3g; d
Term 2 a_] = ..a_gl a_gl__ St (65)
R K Qi1 di
6
Torm 3 : 3G _ 3g1 | 331 dgen

Yy 8Y: Oqguy dYi
[
7
Terms 5-7 are derived from the condition g = 0 as

- -1 —
Term 5 - I _ _ |: 3G :] ags
do L) 304
dgi+1 3, 17" 23
Tt 6 : = | ——— e
o =[] ©0
dgi+ [ 3g2 ]‘1 3
Term 7 : =— 2
dY; 341 oY%
For determination of term 4 an implicit function is defined at the previous time step as
CAg; — oy + 04—y — CAel
G, = 91,ki|:=[ kT Tk T k) 3 67
¢ [ G2k Q= Qi1 — AleQi—1/2 7
= Gy (k, Yi(k), Vi1 (K), dex(k)) = 0. (68)

For this function the total differential is given by
de BGk 3_(;,;;“9_13. HG;L dYk_; aGk dﬂ.Ek

—_— K 69
de oK Y, de  3Y,; dr dAe, di (69)
and we deduce
-1
dy; aG G aG; dY;- aG, dA
el U B bl k i R . (70)
de Y, e Y, dx dAe, de
Ry e L T
8 9 10 1 12 13

Concerning terms 8-13 the following remarks are made.

Term &: This term corresponds to the Jacobian J of the local iteration, and thus it is

available.

Term 9: For this term the partial derivatives of the function G with respect to the
material parameters & are required. For the special case of Steck’s model the result is given
in subsection A.3 of the appendix.
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Term 10: Note the simple relation

=——2L (71)

Term 11: This term can be adopted from the previous time step. Thus it can be seen that
the sensitivity analysis yvields a recursion formula. It is not necessary to take into account
results from time steps which are before the previous step.

Term 12: This term corresponds to the elasticity matrix C.

Term 13:

dAg; B dAV,
de  dr

The sensitivity analysis may be summarized as follows.

1. Firstly the partial differentials of the functions g; and g, with respect to &, Yiq1. ¥z
and Aegyy have to be provided.

2. The internal variables g4 are condensed,

3. As aresult a recursion formula is obtained.

4, In the case of homogeneous 1D problems (ji.e. in the absence of field equations) the
remarks in points 1-3 are also valid.

The following remarks are made on numerical implementation.

1. The numerical implementation—including condensation—can be carried out
independently of the specific material law if the partial derivatives of the functions g; and
g2 are provided. This fact is of importance for implementation of further material laws.

2. The gradient is calculated in parallel to the finite-elemente analysis by doing an
update of both the process variables Y, and its derivatives d¥;/de at each time step. Thus
storing results for d¥;/dx at all time steps is avoided.

5. Examples

5.1. Stationary creep for aluminium according to Servi and Grant

In the first example the iteration behaviours of an evolution strategy and a gradient method,
the Bertsekas algorithm, are compared. The material law and the experimental data for
aluminium according to Servi and Grant [15] are taken from [8]. In this thesis parameters
were identified for tension tests with homogeneous stresses and deformations. The material
law is given for the rates of strains in logarithmic form as

) k2000 KO
In(&) = k1 = =2 + s ln [sh (ﬁ)] 72)
where R = 8.314 Y mol™! K~ and Up = 149 kJ mol~!.

The following least-squares function has to be minimized:

m

Fiey =" [Ingees) - InE )T (73)

The gradient is simply given by
df () T, . 1 d ()
£l =2 [ ) - In] L) 74)

d de
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with
d (11;52;,;)) —1 (75)
d(in) _ U (76)

d.‘Cp_ RT

e =nfa (5]
d(In¢,)) m) a/RT 78)

des #3h (-ﬁ sh (k40 /RT)’

Table 1. Aluminium according to Servi and Grant: starting vector, solution vector and
corresponding function values for three optimization algorithms.

Starting vector k' Sclution vector w*

10.0 25.170
K 1.0 1.085
10.0 3.815
1.0 0.371
fls)y 5739127 4.042
-4
{368 K ATE K
- 755 kB4 K 533 K
o 8-
T
Lo -
=10
) "
£ 7 4
-i4 A sxperimanial date
1l 7 /o oplimized data
-16 -
-18 L2502 100 I N N N T N O I ML L
0 5 10 15 20 25 30 35 40 45
g [N/mm?]

Figure 1. Aluminium according to Servi and Grant: experimental data and optimized data for
six different temperatures.

For optimization, three methods, a one-level evolution strategy, a multi-level evolution
strategy and a Bertsekas algorithm, were compared. Both the starting vector and the
solution vector were identical for all computer runs (compare table 1). In figure 1, both
the experimental data and the optimized data for the strains with six different temperatures
are shown. In table 2 the CPU time, the number of function evaluations and the number
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Yable 2. Aluminiuro according to Servi and Grant: comparison of three optimization algorithms
for cpu time, number of function evaluations and number of iterations.

Number of function  Number of

crU time ()  evaluations iterations
One-level 154 55386 13859
evolution strategy
Multi-level 47 36421 1217
evoletion strategy
Bertsekas <l 29 25

algorithm

of iterations are compared for all computer runs. For this example the advantage of the
Bertsekas algorithm is obvious.

5.2, Numerical tests for Steck's model for a 1D tension specimen

In this section the material law due to Steck in its one-dimensional form is used for numerical
tests. Therefore, using the data for aluminium, Al 99.999, of table 3 and table 4, creep
curves were calculated which are shown in figure 2. For time integration the second-order
mid-point rule was applied. The results obtained are regarded as experimental data for the
following tests.

Table 3. D specimen: material parameters for the model of Steck (Al 99.599).

Activation energy Uy 149 kJ mol-!
Cas constant R 8315 10*  kimoi~! K™!

Melting temperature T, 933(660) K (*°C)
05T,  466(193) K (°C)

<1 243 x 101" 1) mol! -t

& 141 % 10* kI mol~! 5!
Material by 105 x 1072 mol kJ-?
parameters o 0.951

B 9.19

Py 0.275

AV 1.15 kJ mm? N-1 mol-!

Table 4. 1D specimen: data for creep curve determination with Steck’s model. Number of time
steps, 50, size of each time step, Az = 80 s; number of stresses, 10.

1 2 3 4 5 6 7 g8 9 10

g(MP2) 47 435 35 32 25 20 18 15 1z 10
T (K) 660 670 680 690 OO TIO T0 Y30 740 750
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time

Figure 2. 1D specimen: 10 creep curves using Steck’s model with data according to tables 3
and 4.

As an objective function for an inverse problem the following least-squares function
was considered:

10 50
Flr) = ;Z(s’”('?h &) i, (79)
=] j=I

For minimization of the objective function the Bertsekas algorithm was used. Two computer
runs were started using different starting vectors as shown in table 5. The solution vectors
of both runs are given in table 6. It can be seen, that both runs give the same solution,
which are identical to the vector of table 3. In table 7 some results are presented concerning
the number of iterations, the number of function evaluations and the CPU time. The iteration
behaviour of the objective function is shown in figure 3. Note that the evolution strategy
did not give satisfactory results after 3 h.

Table 5. tp specimen: starting vectors of two computer runs for identification of parameters.

Computer run ] 2

<1 1 1674535 kI mol~! g~!

e 1.0 143905 KJ mol~! s!

A 1.0 10516 x10°2  mol kI-!

o 1.0 1196

8 10 126

P 1.0 0147

AV 1.0 228 %1072 kI mm? N~! mol-!

5.3, Compact tension specimen

In this section our optimization algorithm is tested for parameter jdentification in the context
of a finite-element method. The specific example is a compact tension (CT) specimen as
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shown in figure 4. Of course, the deformations are below the limit of localization at the
nodge. As a material law Steck’s model is used. The discretization is shown in figure 5. It

R Muahnken and E Stein

Table 6. 1D specimen; target and obtained values for the material parameters.

Target Ohbtained

e 243x 108 243 x 10! KImol™ st
¢ 141 x 10 141x10* K mol~ts™!
by 105% 1072 1.05x10"2  mo! k™!

o 0.951 0.951

8 9.19 9.19

K 0.275 0275

AV 115 1.15 K mm? N™! mol™!

Table 7. 1D specimen: some results for two computer runs with the Bertsekas algorithm.

Computer run 1 2

MNumber of iterations 2783 3077
Number of function evaluations 4511 5390
¢pu time (DN 10000) {min) 4.5 17.4

2500
1527000

2000

1500

1
1
1
3
r
t
1
1
t
L]
]
Ll
1
1

objective function

1000

500

P T T A O N N I O T O O |

0 T 1 1 F [ T P v | LR LI L

¥
0 500 1000 1500 2000 2500 3000
pumber of iterations

Figure 3. 1D specimen; iteration behaviour of the objective functions for the Bertsekas algorithm.

is the result of an adaptive refinement based on the Zienkiewicz-Zhu error estimator.

Conceptually we proceed in the same manner as in the previous example. Firstly a
direct problem was solved with material data of table 3. Using 30 unequally spaced time
steps we obtained creep curves for V; and V, at those points which are marked in figure 5.

The results for the creep curves are shown in figure 6.

As an objective function the following least-squares function was examined:

N=30 MP=16 >
Vi — Vi ,
f= E E — || — min.
Vlter:l -V
k=1 j=l ki k,
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Figure 5. CT specimen: discretization after adaptive refinement; marking of cight duta points.

Table 8. CT specimen: starting, target and cbtained values for the material parameters.

Starting  Target Obtained
el 108 2431017 237« 108 K moyts!
o3 104 141 % 104 9488 x 100 KImol~ig!
W 14 1.05% 1072 1.05x 10" mol kI-!
P 10 0.951 1.021
B 10t 9,19 419
x 1.0 0275 0.275
A¥ 1.0 115 1.15 KJ mm? N~ ol

For optimization an SQP method as described in {13] was applied. The itetation behaviour
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Figure 6. CT specimen: calculated creep curves with Steck’s model; the numbers on the right-
hand side correspond to the nodes in figure 5.
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Figure 7. cT specimen: iteration behaviour of the scaled objective Function for the sQP algorithm.

of the objective function is shown in figure 7. The number of iterations and the number of
function evaluations are as follows:

number of iterations: 238
number of function evaluations: 335.

In table 8 the starting values, the target values and the obtained values are shown. It
can be seen that four material parameters of the obtained values are identical to the target
values, whilst three values are different. This result and further tests indicate a dependence
of the material parameters which did not occur in the previous example.
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5.4. Discussion of the results

The results of the identification for the homogencous test and for the CT specimen seem to
be contradictory. Whilst in section 5.2 all parameters were recovered by the optimization
process, we have a dependence of three parameters ¢;, ¢; and o in section 5.3. The
reason is found in choosing the target functions: whereas in section 5.2 the experimental
displacement-time curves were calculated for 10 different temperatures, only one tempera-
ture was used in the second case,

In order to clarify this, we examine equations (10} and (11), and, especially for constant
temperatures, the expressions

-1
€ exp[— (1 — ozK %)] = const) (81)

and

czexp[— g%ﬁf:l =czexp[— %:l exp [%} (82)

COSty

One recognizes that the terms const;, { = 1,2 contain three instead of two independent
variables. Thus, it can be concluded that the material equation in the present form cannot
be used in general for identification of material parameters. At the moment the equations
are being modified for general requirements in collaboration with Professor Heck of the
Technical University of Braunschweig.

6. Conclusions

It is obvious that the identification of material paramters of complex constitutive equations
from various tests is an important requirement in order to obtain reliable simulations of
inelastic responses of system components. Mathematically this task is usually a Hadamard
problem.

Furthermore it could be shown that gradient methods are much more efficient than
stochastic evolution strategies even in the case of homogeneous stress fields.

Finally it is an important issue that general identification methods for material parameters
yield a verification of the constitutive equations for the domain of intended applications,
or even a falsification. The consideration of field equations makes it suitable for model
adaptivity describing different constitutive equations in different process areas.

The implementation of geometrical non-linearity including damage is in progress.

Appendix. The material Iaw of Steck

A.l Jacobian matrix J

3 3 9Agn 3Agl" 1
.......gl_ = -1 + ( _ ._U‘.'!‘.""_l) nk+l/2ng+]/2 + et 7 o § (!4)(4 _ 51‘1-14'1‘) (83)

Ze
0041 27 80v.+1/2 40y4s1/2
39y 3
Feer = TART SStenmee 2
F 1
% = — =€yt (83)

A0y M
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g2 _, + (Atk+1c‘z exp[—(aUo — BFry12)/RT] B _ Agifkﬂ)

O Fi 1 2RT 2MRT
with
T
B=ILLLOT s = (7= 31 Y o
1 12
Np41/2 = k12 Svk+1/2 Cyk+1/2 = (%83,k+1;28u,k+1/2)
,

A&, = At M erexp[— (1 — [(& — 1)/«1Up/RT)]

_ AV 141/ F
x (2 sinh (Eau'k,f.] /2) ) exp (—%}/2)

_ 3AfNeyexp[— (1 = [@@ — 1)/«)U/RT)] T (_ ka)

e =

4 (2sinh (AV/RT 0y k4112)) RT
AV M1/ AV AV
i — h —_
X (2 sinh ( RT O’v,k.;.l/g) ) (2 COS. ( RT O’u_{H_Uz) ) RT
Agl
e = v k+1

1 — n .
2RT + heyM exp[—(aUo — BFey12)/RT] + Asll,

A.2. Consistent tangent matrix

Cr = b1|3x3 + b21313T 4 b3nk+1/2n‘z‘+l/2

with
1
b =—
231
_ b]dg
- a + 3a1
351(13
by = —————
3a; + 2a3
and
1 3A£in
a=— .l_ ___....ﬁ
2 4oy
v IASI;:HI
ay = —— — ——
E 4oyt
9AED
a; = 36162 kil
80y k+1/2

A.3. Derivatives with respect to the material parameters
T
We define « := [\, AV, a, k, ¢1, B, e

g
— = -3un
3, W12

in
AE L1

i=1,...,7.
ch;- !

(86)

(87)

(88)

(89)

(80)

on

(92)
(93)

(94)

(95)

(96}

O7)

(98)
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e =0 ©9)
g% “‘%ﬁ%ﬂ P=2.4,5 (100)
g—‘z = i, E%f:l‘ ~ Atiy1026xp [—(@Up — BFiyrj2)/RT] g—; (101)
g_i':: - :f%ﬂ + Atggrczexp{—(als — BFiy1y2)/RT] F’I‘;’}” {102)
gi—: = ;f 3A+::+_1 + Aty1 exp[—(aUs — BFi12)/RT] (103)
with
dAem A
;;,lkﬂ 3;,k+1 (104)
aAa—EiHl = R—lfAsu et (1 1/6) (coth( Vo*,,. k+1/2))0u,k+1/2 (105)
iﬁ% =y 0ol (106)
BA:E;HI — Aeizﬁ-l (%(a - D+In (ZSinh (%“ﬂ.kﬂlz) )) (107)
i%ﬂ %Agffkﬂ (108)
a_Aas,::"i =0 (109)
Mas—::?ﬂ =0. (110)
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