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ABSTRACT

In this paper I am interested in investigating automatic model selection in local polynomial

fitting, in particular the method of bandwidth and order selection introduced by Fan and

Gijbels. I will discuss computational aspects of these methods. Finally I will introduce a

method of automatically selecting the quantity and location of a set of local polynomials.

1 INTRODUCTION

Smoothing techniques are often used in nonparametric regression as a powerful

method for finding regression curves from a set of points. There is a wide selection

of such methods (for example see Hastie and Tibshirani 1990).

Common regression smoothers are the Nadaraya-Watson and Gasser-Müller kernel

estimators (Gasser and Müller 1979, 1984: Nadaraya 1964; Watson 1964), smoothing

splines (Reinsch 1967; Wahba 1990), and local polynomial (see Müller 1988). All of them

use the idea of kernel smoothers. Fitting local polynomial smoothers, which includes local

linear smoothers as a special case of polynomials with order 1, has a number of advantages.

For example, the estimator achieves full minimax efficiency (using an Epanechnikov kernel

(Fan 1993)) among linear estimators, and adapts automatically to the boundary (Fan and

Gijbels 1992). However, many practical issues of the fitting of local polynomials remain

to be studied.

The rest of the paper is organized as follows. Section 2 is used to introduce local

polynomial regression. In Section 3 I will explore methods of automatic bandwidth

and order selection suggested by Fan and Gijbels, while in Section 4 I consider some

computational issues. In Section 5 I introduce a new method for automatically choosing

the number and location of local polynomial regression center points. Finally, in Section

6 I make a few considering remarks.
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2 LOCAL POLYNOMIAL REGRESSION

Consider bivariate data (X1,Y1), ...(Xn,Yn) (similar results can be achieve for higher

dimensions), which is a random sample from the population (X,Y) whose relationship

can be represented as:

Y = m(X)+σ(X)ε E(ε) = 0, var(ε) = 1, (1)

where X and ε are independent. We are interested in estimating the regression function

m(x) = E(Y | X = x) and its derivatives. We can approximate the function m(x), using a

Taylor series, by a polynomial of degree p for x in a neighborhood of x0:

m(x)≈m(x0)+m(1)(x0)(x−x0)+ ...+m(p)(x0)(x−x0)p/p! . (2)

Let h be a bandwidth which controls the size of the neighborhood and be kernel function

(symmetric probability density function). Then we can carry out weighted polynomial

regression by minimizing

n

∑
i=1

(
Yi−

p

∑
j=0

β j(Xi−x0) j

)2

K

(
Xi−x0

h

)
(3)

where β j = m( j)(x0)/ j! . This can be written in the matrix form:

(Y−Xβ)tW(Y−Xβ), (4)

where W is an n× n diagonal matrix with W i,i = K((Xi − x0)/h), (Y) = (Y1,Y2...,Yn)t ,

β = (β1,β2...,βn)t and

X =




1 (X1−x0) . . . (X1−x0)p

1 (X2−x0) . . . (X2−x0)p

...
...

. . .
...

1 (Xn−x0) . . . (Xn−x0)p


 . (5)

Then ordinary least square theory gives the solution:

β̂(x0) = (XtWX)−1XtWY (6)
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whose conditional mean and variance are:

E(β̂(x0)|X1,X2, ...,Xn) = (XtWX)−1XtWm = β+(XtWX)−1XtWr , (7)

var(β̂(x0)|X1,X2, ...,Xn) = (XtWX)−1(Xt X)(XtWX)−1 (8)

where m = (m(X1),m(X2), ...,m(Xn))t ,r = m−Xβ, the residuals of the local polynomial,

and is an n×n covariance diagonal matrix with i,i = K2(Xi−x0
h )σ2(Xi).

In practice, before performing local polynomial regression, the number of local poly-

nomials (nx0), the location of the center points (vector x0), the bandwidth (vector h) and

the order of the polynomials (vector p), and the kernel function have to be specified.

Usually, one may want to start with polynomials of order p= 3, some bandwidth h, a set

of center points, and depending on the result, increase or decrease the bandwidth, and

sometimes increase or decrease the order.

The main family of kernel functions used is the symmetric Beta family:

K(x) =
Γ(2α+α)

Γ(1+α)222α+1
(1−x2)α

+ (9)

where the subscript + means positive part (which is assumed to be taken before the

exponential, so the function support is [−1,1]). This family includes the uniform kernel

(α = 0), the Epanechnikov kernel (α = 1), the biweight kernel (α = 2) and the triwieght

kernel (α = 3). Also, it includes the Gaussian kernel K(x) = φ(x), in the limit as α→ ∞

(Marron and Nolan 1988).

3 AUTOMATIC MODEL SELECTION

3.1 Model selection criterion

The above theory of local polynomials works fine for the right choice of order p, and

bandwidth h. In practice we do not know the right choice of p and h. Let us look at
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regressions, when we use the wrong p and h. I will use a simulation of a Gaussian peak

(Seifert and Gasser 1996) (Figure 1) as an example:

m(x) = 2−5x+5e−( x−.5
.05 )2

. (10)
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Figure 1: Plot of a Gaussian peak and the same Gaussian peak with added noise in the
form of Normal with mean 0 and variance 0.5

Figure 1 shows m(x) and a sample at 100 equally spaced points in the interval [0,1]

where normally distributed error with variance σ2 = 0.5 was added.

First consider bandwidth selection. When we fit a local polynomial of a degree p with

bandwidth h we have to specify the bandwidth. From Figure 2 it can be seen that small

bandwidth gives a smaller bias, but higher variance, and larger bandwidth give lower

variance, but larger bias. I have computed mean squared error, the lowest MSE = 8.5

has regression with h = 0.1.

Now, consider the regression behavior for the different orders of polynomial. For

these regressions I chose bandwidth h = .1. From Figure 3 it also can be seen that the

lowest order of polynomial has the highest bias and the lowest variance. Here we have
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Figure 2: The local polynomial fit based on 100 equally spaced data points. The fit
consist of 100 local equally spaced polynomial with bandwidth h given at each plot. The
solid line is local polynomial fit, dash-doted line is Gaussian peak. (CPU time less than
4 seconds per regression)

a regression which is a little bit better than the one which we had before (for p = 5 and

h = 0.1, MSE = 7.9).

However, here I used information about the data to calculate MSE and chose the

model. Usually we do not have that kind of information (otherwise there would be no

reason to do estimation).

So, to find the optimal order and bandwidth we need to introduce some quantity

which would represent the cost in bias-variance trade off. We will use both the usual

MSE and a preliminary quantity called the residual squared criterion (RSC) of Fan and

Gijbels (1995b) which estimates the local mean-squared error (MSE) (I will use bold font
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Figure 3: The local polynomial fit based on 100 equally spaced data points. The fit
consist of 100 local equally spaced polynomial and the order of polynomial is given at
each plot. The solid line is local polynomial fit, dash-doted line is Gaussian peak. (CPU
time less than 4 seconds per regression)

for observed value of MSE and italic for MSE which we want to approximate). This

latter quantity is based on the normalized weighted residual sum of squares:

σ̂2 =
1

tr(W)− tr((XtWX)−1XtW2X)

n

∑
i+1

(Yi−Ŷi)2K

(
Xi−x0

h

)
(11)

with ŷ = (Ŷ1,Ŷ2, ...,Ŷn)t = Xβ.

The RSCis defined as :

RSC(x0;h) = σ̂(x0)(1+(p+1)V) (12)

where V = (S−1S∗S−1)1,1 , S= XtWX , and S∗ = XtW2X. We can estimate Σ by σ2W2,
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(Fan and Gijbels 1995b), then the variance in (8) can be estimated as

var(β̂|X1,X2, ...,Xn)≈ σ2S−1S∗S−1

.

A few words about V. The formula for V is kind of complicated, but let us consider

for simplicity the case where W is an n×n identity matrix, then

V−1 = ((XtX)−1(XtX)(XtX)−1)−1
1,1 = (XtX)1,1 =

n

∑
i=1

X2
i .

In general, V−1 measure the number of active local points, i.e. points which contribute

to the regression.

The intuition behind (12) is as follows. If the bandwidth is too large or the order of

polynomial is too small, the regression does not fit well, and the residual sum of squares

σ̂2(x0) is large. If the bandwidth is too small or the order of polynomial is too large, the

variance term V is large . The theoretical proof of this result can be found in Fan and

Gijbels (1995b).

Based on the variance approximation above, we can also find the mean square error

of a given fit: MSEp = bias2
p +var2p. Variance can be approximated by

v̂ar2p = S−1S∗S−1σ̂2(X0). (13)

To approximate the bias, we can fit a polynomial of larger order (say of order p+ a).

Than biasp = (XtWX)−1XtWr , with r = m−Xβ,can be approximated by

b̂iasp = (XtWX)−1XtWτ (14)

where τ is an n×1 vector:

τi = βp+1(Xi−x0)p+1 + ...+βp+a(Xi−x0)p+a (15)
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The choice a= 4 is
√

n consistent, but a= 2 will be close to
√

n consistent and a lot cheaper

computationally. Using the RSCat a preliminary stage, we will obtain an estimate of τ̂

of τ. Then the mean squared error is approximated by:

M̂SEp = b̂ias
2
p + v̂ar2p . (16)

3.2 Automatic bandwidth selection

From the previous section it is clear that we have to minimize RSCin order to find the

best bandwidth, we have to begin by minimizing RSC. However, RSCreflects only residual

squared criterion at one given point x0, but we want to use the resulting regression in

some neighborhood around x0, say in the interval [c,d]. So, to find the estimated optimal

bandwidth ĥ for the polynomial of order p we first have to fit a polynomial of order p+a

and minimize the integrated version of RSC:

IRSC(h) =
Z

[c,d]
RSC(y;h)dy. (17)

Then we have to minimize the integrated version of MSE for pth order polynomial:

IMSE=
Z

[c,d]
M̂SEp(y;h)dy. (18)

using the bandwidth obtained from minimizing (17) to estimate τ. In both cases we will

have a step function for bandwidth which we can smooth by averaging locally. Let us

call the bandwidth obtained by minimizing (18) ĥR.

The resulting bandwidth ĥR is the best estimated bandwidth for a polynomial of order

p. Note that we have to do the same for each local polynomial.

Returning back to the Gaussian peak, I have found ĥR, based on p=3, and the

Epanechnikov kernel, by minimizing IRSCand IMSE in the set:

h = {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}.
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The regression is shown in Figure 4. This regression is clearly better that any with the

constant bandwidth in Figure 2 (MSE = 6.4)
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Figure 4: The local polynomial fit based on 100 equally spaced data points. The fit
consists of 100 local equally spaced polynomials and the with variable bandwidth h chosen
by minimizing IMSE for each local polynomial. The solid line is local polynomial fit,
dash-doted line is Gaussian peak. (CPU time about 12 of minutes)

3.3 Automatic order selection

Fan and Gijbels (1995a) show that there is no reason to look at even powers of

polynomials because we can go up to the next odd power without increasing variance but

decreasing bias (free lunch).

Using the same IMSE we can choose between different orders of polynomial up to the

order of pmax. First we have to fit polynomials of order pmax+ a. Then, by using this

polynomial, estimate IMSE for polynomials of order lower than pmax, and then choose

the one which has the lowest IMSE. The regression for the Gaussian peak is shown in

Figure 5. Clearly this regression is the best (MSE = 3.9). Fan and Gijbels (1995a) show

that the selected order of regression does not depend highly on bandwidth. Indeed it is

highly robust to bandwidth selection.
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Figure 5: The local polynomial fit based on 100 equally spaced data points. The fit con-
sists of 100 local equally spaced polynomials with variable order p chosen by minimizing
IMSE for each local polynomial. The solid line is local polynomial fit, dashed -data,
dash-doted line is Gaussian peak. (CPU time about 10 minutes)

4 COMPUTATIONAL ASPECTS OF MODEL SELECTION

Above I describe an integrated RSCand MSE and the model selection procedure by

minimizing these two. However, theses are expensive to compute. One of the ways to

approximate integrals is to evaluate the function in the middle of the interval and multiply

it by the length of the interval. Usually this method works only for small intervals and

very smooth functions. Let us look at RSCin the Gaussian peak example for center point

x0 on the interval [0.5,0.51], which is the interval for a single polynomial.

From Figure 6 we can see that RSCdoes not change a lot in the neighborhood of

x0. Figure (7) shows that it is almost flat, and Figure (8) shows that there is almost

no difference in the RSCfor different x0 and the same h. Indeed we would see similar

characteristics for any small enough intervals. Therefore we can minimize RSCinstead

of IRSC(length of the interval is just constant). Similarly, we can approximate IMSE by

MSE.
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Figure 6: The plot of RSC for x0 in the interval [0.5,0.51] and h in interval [0,0.5]. One
dimensional versions of this plot are shown in Figures 7,8.
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Figure 7: Values of RSC for x0 in the interval [0.5,0.51], which has 10 separate lines for
h in the interval [0,0.5].

In both model selection procedures, first we have to minimize IRSC for p+ a order

polynomial to obtain τ̂ and then minimize IMSE using that τ̂. However, in the simulation

that I have done, IMSE (approximated by MSE) gives almost the same selection for ĥ

as IRSC does. This happens because I minimize h on a discrete set of 5 or 10 values

for h. Increasing the number of points in that set will increase the computational time

tremendously. However, if one has the time and a powerful enough computer to minimize

it on the set of 100 or more values for h, IMSE minimization will give a different result

than IRSC, which may be noticeably different or not, depending on the data set.

As a result, for many practical cases we can combine the two model selection proce-
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Figure 8: Values of RSC for h in the interval [0,0.5], which has 10 separate lines for x0

in the interval [0.5,0.51]

dures above as follows. First we fit p+1
2 regressions for each choice of h, then we pick h

and p corresponding to the regression with lowest RSC. Note, this procedure has to be

done at each point, and at each point we have to select the best bandwidth and order.

Figure 9 shows the regression using this method. This regression is the same, as one

in Figure 5 (MSE = 3.9), but computationally a lot faster.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6
Plot of local pol. regr. using the best order and the best bandwidth, MSE=3.9

X

m
(X

)

Figure 9: The local polynomial fit based on 100 equally spaced data points. The fit
consists of 100 local equally spaced polynomials with variable order p and bandwidth h
chosen by minimizing RCSfor each local polynomial. The solid line is local polynomial
fit, dash-doted line is Gaussian peak. (CPU time about 4 minutes)
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5 BINARY TREE INTERVALS SELECTION

Suppose we chose a vector x0 of length nx0, and we want to choose between nh h’s, and

np p’s. By the procedure above we would have to make nx0×nh×np local regressions.

However, if we choose to have large bandwidths in a region, less center points x0 should

be needed. None of the model selection procedures above look at varying the number

of x0, but it is important. Too many x0’s would increase the cost of computation, too

few x0’s would produce singularities. Note that the natural lower bound on h is half of

the distance between x0’s. Also, it is clear that in neighboring intervals which are small

compared to bandwidth size, the bandwidth should be similar, or even the same. Hence

an algorithm which adapts the number of center points with the bandwidth is intuitively

appealing. We can do so efficiently by looking at binary tree intervals. Here is a small

algorithm of how it works:

(1) First we use nx0 number of x0’s and evaluate IRSCusing a variable order of poly-

nomials on the whole interval of regression [a,b], using some original bandwidth h.

(2) Then we divide the original interval evenly into two subintervals: [a, a+b
2 ] and

[a+b
2 ,b].

(3) Repeat steps (1) and (2) for each of the subintervals using nx0 number of x0’s

on each of the subintervals and bandwidth g(h) until minimum tolerable bandwidth is

reached.

The result of this algorithm is a sequence of local polynomial estimates of m(x), each

using twice the number of center points x0 (and a reduced bandwidth) as its predecessor.

A final estimate with an adaptively chosen number of center points may be created by

selecting non-overlapping subsections from these various estimates.

I choose to select the model with lowest total IRCS. One way would be to look at all
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possible combinations, but the number of possible combinations grows up very fast. The

table below shows just how quickly this number grows.

# of times nx0 in doubled # of possible combinations

0 1
1 2
2 5
3 26
4 677
5 458330

Clearly another more efficient method is required. Coifman and Wickerhauser (1992)

derived an algorithm which they use for finding the best basis for a given signal, among

a library of orthogonal bases. This algorithm, without any changes, can be used to find

the best combination.

In this algorithm we compare the IRCSof each interval to the sum of the IRCS′s of

its two children and choose whichever has lower IRCS. Figure 10 shows an example of

IRSCfor each interval, and Figure 11 shows intervals which we would choose.

100

20 50

13

6 8

6 20 35

1510 12

*

1* 2*

*

* 16*

*

Figure 10: Example of chosing best bandwidth based on binary tree. (Taken from Ko-
laczyk 1995)

A word about the function g(h) which has to reduce bandwidth h with each interval

division. Fan (1993) says that it has to be of the form: g(h) = c∗nα
x0

, where 0 < α ≤ 1,
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Figure 11: Example of chosing best bandwidth based on binary tree. Dark boxes indicates
intervals choosen. For data see Figure 10. (Taken from Kolaczyk 1995)

and the constant c depends on the range of the data, number of points in the data, etc.

I have chosen to use g(h) = c
√

nx0, but different choice of g would lead to a similar result

but will change the number of divisions needed.

Figure 12 shows this procedure applied to the Gaussian peak. In this regression I

started with nx0 = 16 and allowed the algorithm to double it three times. Using the

selection procedure described above, 80 central points where chosen. The regression has

an MSE = 4.8, which is a little bit higher than in best order selection by minimizing

MSE (Figure 5), but there I used polynomial of order up to five, and here only of order

up to 3, but the computational time is a lot lower. The lower plot shows the selected

bandwidths. There are a few areas where bandwidth was selected to be smaller, but the

order was select to be 3 in the interval [0.3822,0.6897] only. There where more point in

the intervals with lower bandwidth.

6 DISCUSSION

The simple example presented in this paper, illustrates the computational advan-

tages to be gained by rougher approximates of the minimization criteria, with little loss

in quality. Bandwidth selection tools seem to be a promising method in the automa-
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tion of model searching, and with this tool we may get improved performance by local

polynomials for different data.

It would be interesting to find a criterion so that the number of divisions can be

automated. For example, if either of IRSCor IMSE are convex, we could look for the

minimum, and stop once this is accomplished.
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Figure 12: Upper plot:The local polynomial fit based on 100 equally spaced data
points. The fit consist of 100 local equally spaced polynomials with variable order p
and bandwidth h chosen by minimizing RSCusing binomial tree. The solid line is local
polynomial fit, dashed -data, dash-doted line is Gaussian peak. (CPU time about 2
minutes)
Lower plot: Bandwidth selected by minimizing RSCusing binomial tree
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