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Abstract

While the energy dissipation function can be approximately determined without explicit knowledge of the
damage-induced constitutive nonlinearities as discussed in Parts I and II of this work, a more refined approximation
requires a representation of the full-scale nonlinear behavior. This information is also of much interest in its own
right since it is needed for stress analysis when analyzing the behavior of structural components loaded well into the
nonlinear response range where substantial load redistribution is expected. Part III addresses a representation of the
constitutive behavior in terms of the energy dissipation function that is developed with a more refined scheme for
identifying the dissipation function itself.

1. Introduction

The basic obstacle to a comprehensive under-
standing of failure behavior in composites is the
complexity of their observed mechanical behavior
[1-3]. Composites are generally anisotropic,
markedly nonlinear, and, unlike metals, usually
fail in an extremely complicated, spatially diffuse,
noncatastrophic manner. The nonlinear mechani-
cal behavior of composites is known to be associ-
ated with damage accumulation that causes a
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local decrease in stiffness of the material in areas
where damage is pronounced. Moreover, the
complicated manufacturing process results in
many imperfections that take on a variety of
forms including fiber imperfections, fiber mis-
alignment, and geometrical irregularities in the
distribution of fibers, voids or microcracks in the
matrix material, and the presence of debonded
areas. These defects, combined with high-stress
fields near material or geometric discontinuities,
induce matrix cracking, fiber breakage, fiber-ma-
trix debonding, and delamination, all of which
influence the overall mechanical properties of
these materials.

The approximate procedure used in Parts I [4]
and II [5] for determining the dissipated energy
density function has the following shortcomings:
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first, the required strain fields are computed by
assuming linear elastic behavior and by using the
elastic constants corresponding to the "virgin"
material, rather than by using the proper nonlin-
ear constitutive behavior, and second, the proce-
dure is formulated only in terms of a particular
piecewise linear collocation set of basis functions
for representing the dissipated energy density
function, rather than in terms of arbitrary basis
functions. Both of these issues are addressed in
Part III such that the underlying assumptions
involved in the material model are carefully ex-
amined.

2. Basic consideration

To determine the dissipated energy density
function, we regard the composite as being com-
posed of either a single mechanically equivalent
homogeneous anisotropic material, or a collec-
tion of layers of varying orientations of such
materials. Provided that the applied loads are
either quasi-static or dominated by low temporal
frequencies, these homogenization procedures
should provide acceptable models since it is ex-
pected that the wavelengths corresponding to the
spatial variation of the stresses, strains, etc. should
be large compared to the microstructural charac-
teristic lengths. If this is not the case, events on
the microscale can take on a predominant role
and cause significant inaccuracies.

It is postulated that the material constitutive
behavior can be completely described by specify-
ing stress as a function of only strain and a set of
internal state variables, i.e.,

0- =C({, £-), (l)
where C(g, E) is a nonlinear fourth order tensor
function and g is the state variable vector. The
form of Eq. (1) thus obviously precludes dealing
with materials that exhibit marked strain-rate-de-
pendent behavior. Finally, neglected are residual
stresses or strains which may exist when the loads
are removed such as those induced by the curing
process.

The form of the above constitutive relation
implies a restricted implicit type of path depen-

dence in the sense that any path dependent be-
havior results only from internal state transitions
that are reflected by changes in the state vari-
ables A, and not from an explicitly stated load
history dependence. This section considers this
issue in more detail. It suffices to state here that
for the most part the material behaves in a man-
ner similar to that of a hyperelastic material (a
nonlinear elastic material with a strain energy
potential) as long as the state variables a remain
unchanged. Thus, for example, when a material
point is loaded up to a specified strain, the subse-
quent structural response is dependent solely on
the current strains and is independent of defor-
mation history provided no unloading takes place.
Upon unloading, the material behaves elastically
in that no further internal material damage takes
place; however, a state transition occurs when the
unloading commences, and it is this state transi-
tion that is responsible for any memory the mate-
rial might have of its previous loading history. As
mentioned in the introduction, this material
model and its particular type of path indepen-
dence is similar to the model employed in [6-9].
Moreover, it is consistent with the observations
made in [101 for a type of path independence over
a range of tensile and torsional loads in several
graphite-epoxy systems.

A general procedure will be developed for
determining the dissipation density function using
boundary force and displacement data obtained
from IPL tests. The procedure is a deconvolution
process in the sense that the observations reflect
both the effects of material behavior and speci-
men geometry, and that the geometric effects
must be factored out to obtain information relat-
ing to the material alone. To be presented is a
derivation of the precise analytical form of the
constitutive equations.

2.1. Assumptions

A number of assumptions and simplifications
have been invoked. While some of which have
already been emphasized, a complete account is
made as follows:

- The material can be regarded as a mechani-
cally equivalent homogeneous anisotropic mate-
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rial as discussed above. In an angle-ply compos-
ite, this assumption can be applied either on a
ply-by-ply basis or to the collection, as appropri-
ate.

- Loading is either static or slowly varying in
accordance with the considerations already dis-

I cussed.
- The material behavior can be represented as

(- = C(g, e) discussed previously. This assump-
tion by definition precludes consideration of ma-
terials that exhibit marked viscous, rate, and ex-
plicit load history dependences. Moreover, given
this assumption, a so-called work potential (en-
ergy per unit volume), (E), can be defined such
that o- = gradqi(g, e) [7].

- The total energy absorbed by the material
during loading can be regarded as being com-
posed of the sum of a reversible (recoverable)
and an irreversible (dissipative) part. The re-
versible component is the energy that would be
recovered if the material were to unload, whereas
the irreversible part represents the energy which
is dissipated by the internal damage mechanisms.
The latter can be described by a dissipation den-
sity function +(E) (dissipation energy per unit
volume).

- The constitutive relation is continuous in
both stress and strain.

- The deformations are sufficiently small so
that the infinitesimal stress and strain tensors
may be employed.

- Only shell-like structures are considered so
that the stress and strain fields in either the
entire material or in each ply are two-dimen-
sional with no transverse components, i.e., the
stresses and strains can be regarded as vectors
having the form o-= (q , Urccr,-7)T, and E£
(e,7 E n)T, where 07, t, 6) is a coordinate
system embedded in the material or layer with
one axis along the fiber direction as shown in Fig.-r1.

- Displacement continuity is maintained be-
tween layers.

It should be stressed here that no explicit
assumptions are made concerning the detailed
nature of the various failure processes. Rather,
the approach is to introduce a minimal number of
hypotheses that we feel are in accordance with

t s1
Fig. 1. Coordinate system embedded in the shell structure.

physical fact and readily defensible. Moreover,
many of the above restrictions can be relaxed
when the situation warrants.

2.2. Analysis overview

The primary issue here is the estimation of the
dissipated energy density function O(e) and the
subsequent computation of constitutive behavior.
We summarize the steps below and provide more
detailed explanations in the remaining subsec-
tions.

- A representation is chosen for the dissipa-
tion function in terms of a set of m basis func-
tions X = (XI, X2, ,Xm)T and an initially un-
known parameter vector c = (cl, c2, ... I, cm)T.

- A uniform set of loading paths in displace-
ment space is selected (15 for each material or 15
for each of a set of layup configurations for
angle-ply composites), boundary forces and dis-
placements (f, u) are measured at 50 equally
spaced points on each loading path as explained
in Part I [4], and the energy imparted to the
specimen, WP, is computed for each observation
point p. If the composite is regarded as a single
equivalent homogeneous material (in the case of
an angle-ply composite, this implies that each
layup configuration is to be counted as a separate
material), then this procedure yields n = 750 val-
ues of WP per material. If the material is an
angle-ply composite and we wish to analyze the
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constitutive behavior on a ply-by-ply basis, then
the procedure yields n = 750 X np values of WP
for each material, where np denotes the number
of layup configurations.

- The irreversible portion of the imparted
energy, DP, is computed for each observation
point p using the relationship

DP = WP - 21(f P. UP), (2)

where uP are the boundary displacements and f P
are the reaction forces.

- The assertion that DP equals the integral of
0(e(x)) over the volume of the specimen, where
x = (X7, A, 6) is applied at each of the n observa-
tion points p and, in conjunction with a represen-
tation of the constitutive relation in terms of O(E)
to be described later, the strain-displacement and
equilibrium relations, and any appropriate addi-
tional constraints, results in a highly overdeter-
mined set of nonlinear equations for the m com-
ponents of the parameter vector c (a system of
n X m equations with n >> m).

- These equations are solved numerically for c
and the dissipation density function +(e) com-
puted.

- The aforementioned representation of the
constitutive relation is used in conjunction with
the computed values of c to determine the con-
stitutive behavior o- = C(t, E).

2.3. Dissipation density function

The dissipation density function +(e) is repre-
sented by the linear combination

+(0) = c -X(£), (3)
where X(£) is a vector of suitable Co (or smoother
basis) functions over the 3-space (e 7 1n, e;;, 1),

and c the parameter vector to be determined.
This representation is quite general in the sense
that Xl may be chosen more or less arbitrarily, for
instance, as interpolation basis functions over a
suitable mesh defined on (£ E;;, an;) in which
case any of the usual three-dimensional finite
element shape functions may be used; as B-
splines or cardinal splines; or as locally defined or
global orthogonal polynomials. The only signifi-
cant restriction on the form of the basis functions

is that positivity of the quantity +(E) must be
assured to maintain agreement with physical ob-
servation. When X is an interpolation basis, the
components of the parameter vector c are simply
the values of 0 at the node points; however, this
is not true when the later two representations for
X are employed. In practice, it is customary to use
a locally defined linear interpolation basis which
is case in Part 1 [4].

3. Constitutive relations

An overview of the material model will be
given in addition to develop a procedure for
computing the constitutive behavior in terms of
the dissipated energy density function p(E). The
basic premise is that the material can be regarded
as always being in one of two distinct domains:
namely, either purely elastic or inelastic. When
the material is in an elastic domain, no internal
damage is presumed to occur; this results in be-
havior that is load history independent and re-
versible in the sense that no energy dissipation
takes place. The material enters an inelastic do-
main during loading after a certain strain-depen-
dent threshold is crossed. Here progressive inter-
nal damage leads to behavior that is irreversible
in nature with energy being dissipated by the
various internal damage mechanisms. A re-
stricted type of load path independence, whose
precise nature will be discussed shortly, is appli-
cable in this domain.

One way to model this type of behavior is to
postulate the existence of a surface F(a) such as
F(e, {) = 0 in strain space with the following
property: namely, that whenever the strain £ as-
sociated with some material point P is either
inside the surface F(f), or outside F(a) with
decreasing dissipated energy (do(E)/d I £ I < 0),
then P is in an elastic domain. When £ is outside
of T'(a) with increasing dissipated energy
l £/d I -- I > 0), P is in an inelastic domain.
Here the vector f is a vector of internal state
variables that can be thought of as damage pa-
rameters and the surface F(a) acts as a threshold
that defines the elastic/inelastic transition. The
surface F(a) thus plays a role that is loosely

A
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analogous to that of the yield surface (in stress
space) in classical plasticity theory with the state
variables g in the role of strain hardening param-
eters.

The model we used is based on the above
considerations with the additional assumptions

i that there is only a single scalar state variable g
I that takes on discrete values fj, (Q=0, 1 ... ),

and that the function F(e, {i) in the definition of
F(9') be identified with level surfaces of the
dissipation function O(e). A state transition takes
place each time the material switches from an
inelastic to an elastic domain. The state variable
g° is defined by

{° = 0 (4)

for material in the initial state, and by

hi = max 0(e), j = 1, 2, -* (5)

otherwise, where max W(e) represents the maxi-
mum value of energy dissipation encountered in
the previous inelastic domain. Also, the function
F(E, 9j) is taken in the form

F(a, (i) = +(e) -(. (6)

4 (g)

We assert that the state variable f is monoton-
ically increasing, which implies that the threshold
surface F(g) always expands in strain space in
the sense that the elastic domain interior to the
surface r(eJ) must always be included in the
elastic domain interior to r(w'j+). Also, the pa-
rameters that occur in the description of the
constitutive behavior in both the elastic and in-
elastic domains are functions of the state variable
hi, thereby implying the existence of a denumer-
able set of elastic and inelastic domains
parametrized by fj alone. This leads to the im-
portant conclusion that the only memory the ma-
terial has of its past is via the state variable ej,

which implies a one parameter type of history
dependence.

Some aspects of the inelastic behavior implied
by this model are illustrated in Fig. 2, which
shows how the dissipation density function and
an arbitrary stress component o-, vary with £

along three arbitrary radial paths in strain space
in the two inelastic domains bounded by the
surfaces ro and r', respectively. Here ri de-
notes A(O') and increasing values of j imply
increasing values of the associated state variable
ej..

-V

P' eu ( (a) P, (b)

Fig. 2. Dissipated energy density as a function of (a) strains, and (b) corresponding stress-strain space.
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3.1. Inelastic behavior

Consider the inelastic behavior regime first,
and assume that the work potential qt(e) can be
taken as :

(7)wh ere (F) + O(E),
where

¢( £) = 2, (0 ( £) ' £).

suming it to be linear and homogeneous in a
mechanical sense. Thus, taking the scalar product
of Eq. (9) with £ and using the definition of P(e)
decouples the system of Eq. (9) and results in the
following single first order linear partial differen-
tial equation for e(e):

E grade 0 - 2- = -(c grade (p()), (12)

with initial conditions

0(,ri) . a,~t , C1' fte({i, all a2)]This particular form for Eq. (8) is chosen be-
cause the term ¢(e) is equal to the energy den-
sity recovered if the material were to unload
linearly from its present state, and, as is shown in
this section, is energetically consistent with the
postulated elastic unloading behavior. It may not
be the only choice, but it is by far the simplest.

Since r = grade(/{j, e), by definition, taking
the gradient of Eq. (7) gives

a =grade ¢(e) +grad, 9(e). (9)

Eq. (9) is a system of first order linear partial
differential equations in a(e) and can be dealt
with routinely the method of characteristics [11t
when the proper initial conditions are specified
on the surface R(ej); namely,

-(- 8 t) = [Ce(erf, (al, a2))]. (10)

Here (a,, a2) are surface coordinates onr(e),
81' = (ri, a,, a2) denotes the set of £ E -(F')
and are regarded as specified, and [Ce(er', (a1,
a2))] is the known matrix representation of the
constitutive relation for the previous elastic do-
main.

In general, explicit closed-form expressions for
o-(c) cannot be formed that satisfy the initial
conditions of Eq. (10). There is, however, one
such case where such a solution can indeed be
found; namely the case where the constitutive
relation for the prior elastic domain, i.e., Eq. (10)
is linear in e, i.e.,o-(£) = [Ce(E' , (a,, a 2 ))]E. (11)

and where the matrix [Ce( 8 F', (a1 , a 2))] is con-
stant over the transition surface r((j), i.e.,
[Ce(_FJ, (a,, a 2 ))]=[Ce(fJ)l on P'. These crite-
ria are certainly met when the elastic domain
corresponds to that of the "virgin" material as-

xe. ({i, a1 , a2))- (13)

Eq. (12) with initial conditions of Eq. (13) again
can be solved by means of characteristics to yield
the following expression for (£):

(ti, Cell a2 , 3)

=132 ((e rj)) J3 I do (14)

evaluated on the characteristic lines. The above
integral is taken along a characteristic line, that is
defined by

= e({j, a1, 2 , A1) =£ri( a,, a2 )16,
and where by do/d; it is meant that

dq¶ d= a~~~'4 , , a2)).

(15)

(16)

Eq. (15) can be regarded as a coordinate trans-
formation relating the coordinates (a,, a 2, 13) to
(El, 82, 83). To obtain ov(E) we also need the
inverse transformation (el, 82, 83) - (all, 2, A1)
and we must be able to evaluate the gradients
gradE"(E), gradEB2(e), and gradea(e), with a
= (a,, a2). A closed-form expression for the in-

verse can be found when the ay (y = 1, 2) are
taken as the cosines of the angles that the posi-
tion vector 1 Ir I makes with the e., axes, i.e.,

a= e /I -- I

Then, using Eq. (15), Eq. (17) becomes

cgz = e8/ I I ,
and from Eq. (15), there results for 13:

= I £ 1/1 £ 1,

(17)

(18)

(19)

(8)

r6
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where the term er' in Eq. (19) is now undern
to be a function of £ whose values are obtr
by substituting Eq. (18) into Jf(~j, a,, a2 ).
(18) and (19) therefore define the sought
coordinate transformation (e1, 82, 83

(a 1, a 2, 1).
The gradients [gradct(e)], grade 1 ' (e),

grad6,132 (e) are now readily evaluated by 1
Eqs. (15) and (17) through (19). Thus,

grade agY(e) it , 1( |2)

where

sair= [0 ,
0f 0

[grad6 e1r(e)] = [grada eij(e)] [grad6 a(£)],
(22)

where [grada 1'rj(E)] = [grad, I j(c)] I .=..(e) iS

known since the transition surface is already de-
termined, and

grade 132 (e)

( 2 ( )]F- -, I -fl [cgrad . r p1( p\II s (23)

where I is the identity matrix.
The stress field or(e) can now be obtained by

substituting the expression for 0(Q, a1, a 2, 1) in
(20) Eq. (14) into Eq. (9) and using the relationships

between e and (Q, a,, a2, 1) as given in Eq. (15).
Thus o-(e) is given by

a'= ([C'] + 2 r1(I -1[grad,, J (B)] i~)

I1 t2 d; t

9 1 . (do

-32l -2[grade j( e)] grade d- d;.

(24)

E-v

-u

(a) (b)
Fig. 3. Stress-strain behavior for state I 0 (a) and state I" (b).
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3.2. Elastic behavior

In the elastic regime we assume that the mate-
rial can be modeled as a particular type of non-
linear hyperelastic material; namely one that al-
lows for no initial stresses and has linear stress-
strain behavior along radial paths in strain space.
This later assumption was invoked to maintain
energetic consistency with the representation for
0 in Eq. (7) so that the energy available for
elastic unloading is always given by O(E). This
assumption also agrees with repeated observa-
tions of linear unloading behavior during the IPL
tests.

The type of behavior we are attempting to
model is illustrated in Fig. 3 where the linear
behavior along radial paths is shown for two
elastic domains with associated transition sur-
faces F 0 and rF (Fig. 3(a) and 3(b), respectively).
The important point to note here is that the
elastic constitutive behavior is generally nonlin-
ear, it is only guaranteed to be linear along the
radial paths mentioned above. Also note that the
effective elastic stiffness is expected to decrease
with increasing values of the state variable Ai,

which in turn correspond to increasing values of
energy dissipation as illustrated in the Fig. 3.

Consistent with the above assumptions, we
propose a constitutive relation in the elastic do-
main having the form -

(25)

where C' is now taken to be a vector rather than
a matrix. Eq. (25) has a deceptively simple form;
however, it is really quite general and easily sub-
sumes the usual linear form

o= [A]-. (26)

That this is indeed the case is readily demon-
strated since 8 can always be written as £ =

E(aj, a2) I along some path with i being the
associated unit vector. Therefore Eq. (26) as-
sumes the form of Eq. (25) with Ce given as

C 6(al, a2 ) = [A]k(a 1 , a 2). (27)

For the initial state f., the constitutive behav-
ior is assumed to be given by the equivalent form
of Eq. (26) with the matrix A computed using the

"virgin" material properties. For subsequent
states {i, i = 1, 2,- *, Eq. (25) is used where
stress continuity across the surface P' leads to
the following expression for the vector Ce(q, £):

ce(gjfl, e) = r(E1')/I l'j I, (28)
where r(E8j ) is computed by evaluating the
stresses given by Eq. (19) on the surface rF.

It is emphasized that Eq. (25) with Ce given by
Eq. (28) usually results in elastic constitutive be-
havior which is inherently nonlinear because
Cs({, ) is generally not of the form given in Eq.
(26).

3.3. Determination of the parameter vector

The irreversible portion R' of the total energy
imparted to the specimen via the boundary loads
at every observation point i in an IPL test series
for a given material can be computed by numeri-
cal integration since all tractions t and applied
boundary displacements u required for the com-
putations were previously measured and stored.
Thus, R' is given by

(29)R' =f f dun -(fiu')

where i = 1, * *, n. On the other hand, the energy
absorbed by the specimen is by linear additivity

|P'f ~p(e(x)) dx=cjf Xj(E'(C, x)) dx,
Vol Vol

(30)

where the volume integration is to be taken in a
Stieltjes sense over the plies. When doing ply-level
analyses of angle-ply materials, we have used the
representation given by Eq. (3), and the summa-
tion convention is in effect. But P' must equal R'
by energy conservation, therefore

Ri=cjf X(#'(C, x)) dx. (31)
Vol

The quantity E'(c, x) that appears in Eq. (30)
is the specimen strain field corresponding to the
ith observation and is not known explicitly; how-
ever, it must satisfy the constitutive relation as
given by Eq. (24) as well as the equilibrium and
strain-displacement equations, i.e.

- 4

------- -
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and

ei = sym(grad ui). (33)
The appropriate boundary conditions are free

surface conditions (no tractions) except on the
gripped surfaces where displacements are pre-
'scribed. Eqs. (29) through (33) form a coupled

r / system of nonlinear equations whose solution
/ places restrictions on the quantities (c, 8, O, U).

4. Method of solution

The nature of the system of Eqs. (29) through
(33) suggests a solution by the following iterative
procedure:

1) An initial estimate of the strain field, i.e.,
etO(x) is obtained by solving Eqs. (32) and (33)
using the constitutive relation

0= [C0 ]8, (34)
where [C0 ] is the stiffness matrix for the un-
stressed material and can either be obtained from
the literature (when available) or estimated from
mixture theory. The problem defined here is lin-
ear and is readily solved by finite element meth-
ods, or, in certain cases, by closed-form proce-
dures (12-14].

2) Using 8 L
0(x) as the estimate for E'(a, x), an

estimate of the parameter vector c is obtained
from Eq. (31) subject to the constraints that each
component of the imparted energy be monotoni-
cally increasing along every loading path. This
involves solving a linear or quadratic program-
ming problem as explained in Section 5.3 of Ref.
[4].

3) Eqs. (32), (33), and (24) are solved numeri-
cally with the value of c in the representation for
0. (Eq. (3)) taken as co; the new estimate of 8 is
utilized in Eq. (31) to obtain an updated estimate
of c; and the process is repeated until successive

..r estimates differ by (hopefully) a sufficiently small
amount.

Note that except for the initial step, determin-
ing the estimate of £'(c, x) always involves solv-
ing a set of nonlinear boundary value problems.
Although this is in general difficult and time
consuming, as a practical matter, unless one is
interested in venturing deeply into the nonlinear

regime where significant strain redistribution oc-
curs due to spatially widespread material stiffness
changes, sufficient accuracy should be attainable
by implementing only a single cycle of the itera-
tion procedure. Thus, only the linear problem
described in Item 1 above needs to be solved, and
the difficulties mentioned above should be of
little concern. If the need does arise to imple-
ment more than one cycle of the iteration proce-
dure, techniques such as homotopic continuation
methods [15] applied along each loading path are
available to help alleviate the difficulties.

4.1. Initial estimates of the parameter vectors

As mentioned previously, e'0 (x) is computed
by solving a linear boundary value problem. In-
deed, using the fact that any boundary displace-
ment u produced by the IPL can be represented
by a linear combination of opening/closing (ul),
sliding (uo), and rotating (u2 ) displacements, only
three finite element analyses need be performed
in this step since any strain field e£0 (x) can be
represented as

8 io E iOk (35)
k

by linear superposition, where EiOk(x) are the
strain fields corresponding to unit boundary dis-
placements in the kth direction.

With E"W(x) known, the quantity fJ0lXj(e'O(x))
dx in Eq. (31) may be computed. Thus, setting

| lX( x)) dx _=Fij, (36)
Vol

Eq. (31) may be written as the linear set of
equations

[F]z=W, (37)
where W-(RI, *, Rn)T; z-cC, and

IF) [= ... ... ... (

F.l I *-- Fn, .

as long as rank ([F]) < rank ([F]), where: [F] is
the augmented matrix

_ F,, ... F,. W,

........ ... ... . (39)
F.I ... F. W
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Eq. (37) is an overdetermined system and there
exists no value of z that satisfies it exactly. Rather,
one must seek to minimize the norm of the error
vector e = (W- [F]z) to obtain a best approxima-
tion to the solution. This is the usual state of
affairs in parameter estimation; indeed, the more
highly overdetermined the system, the better the
situation since one generally wants to work with
as many independent observations as possible to
filter out any undesirable stochastic variations
(noise). Only if enough observations are linearly
dependent can it happen that rank (IF]) _ rank
([F]) <im, in which case there exists n - rank
([F]) solutions to Eq. (37). This situation should
not arise if the experimental testing program is
well thought out.

Assuming for the moment that Eq. (37) is
indeed overdetermined, we seek to minimize the
norm of e = W - [F]z subject to the constraints
that

- the values of p are positive at the node
points of the interpolation mesh, i.e.,

Zi > 0, (40)

to maintain positivity,
- the dissipated energy is monotonically in-

creasing along each radial loading path in dis-
placement space, i.e.,

row([F])iy z> 0

(row([F])i÷l - row([F])i) -zŽ 0,

i =ip,- *' *i - 1, (41)

where Eq. (41) applies to each loading path, i, is
a point at the beginning of the path, and iq is the
end point.

Note that the above constraints are linear in-
equality constraints in z, and as such are readily
dealt with. Two widely used measures of vector
magnitude are the L2 (Euclidean) and LX
(Chebychev) norms given by

|| x 112 2 = (x1 +x22 + ***+Xn2)2n 42aIX X 2 n (42)
and

(40) and (41) is a problem in quadratic program-
ming since the objective function II W - [F]z l L

is quadratic in the variables (z 1 , Z2.*. * , Zn). This
is a well-established discipline and many efficient
procedures are available to deal with such prob-
lems. Minimizing I e I under the LX norm is just as
straightforward, and perhaps easier, because
there exists a well-known technique due to La-
grange for converting such problems into linear
programming problems that can be solved using
the simplex method or one of its variants. A
highly readable discussion of these optimization
issues is presented in [15,161.

5. Conclusions

A general theory for deriving the constitutive
behavior of damaged composites is presented. It

-uses the full-scale nonlinear behavior such that
the determination of the dissipation density func-
tion can be achieved by using the boundary force
and displacement data obtained from the IPL
tests.
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