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Abstract

An approach to characterizing failure behavior and degree of load induced internal damage in composite
materials and structures is formulated in Part I of this work. It is based on a systematic experimental procedure to
observe the response of composite materials subjected to multiaxial load environment. The energy dissipated by
internal failure mechanisms is employed as a measure of internal damage and is characterized by an energy
dissipation function, which is identified by means of a deconvolution procedure using data provided by NRL's
automated in-plane loader testing machine.

Part II of this work will display the dissipated energy density distributions in composite specimens that are used
for the in-plane loader machine and naval structures, while Part III presents a general theory that includes the
derivation for the constitutive behavior of the damaged composites.

1. Introduction

The use of composite materials in structural
components has increased dramatically in recent
years as their cost of production continues to
decline and advances in composite design
methodology become increasingly wide spread.
As applications become more demanding, the
need for reliable prediction of their mechanical
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properties and behavior is becoming ever more
important.

The basic obstacle to a comprehensive under-
standing of failure behavior in composites is the
sheer complexity of their observed mechanical
behavior. Composites are generally anisotropic,
markedly nonlinear, and, unlike metals, usually
fail in an extremely complicated spatially diffuse
noncatastrophic manner [1-3]. The nonlinear me-
chanical behavior of composites is known to be
associated with damage accumulation which
causes a local decrease in stiffness of the material
in areas where damage is pronounced. In many
fibrous composite systems, damage develops at
applied loads much lower than the design limit
[4]. For materials with a laminated structure, the
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complicated manufacturing process results in
many imperfections that take on a variety of
forms including fiber imperfections, fiber mis-
alignment and geometrical irregularities in the
distribution of fibers, voids or microcracks in the
matrix material, and the presence of debonded
areas. These defects, combined with high-stress
fields near material or geometric discontinuities,
induce matrix cracking, fiber breakage, fiber-ma-
trix debonding, and delamination, all of which
influence the overall mechanical properties of
these materials. Extensive efforts [4-9] have been
taken to identify the various modes of damage in
composite materials in recent years. The primary
outcome of these investigations was that macro-
scopic fracture was usually preceded by an accu-
mulation of the different types of microscopic
damage and occurred by the coalescence of this
small-scale damage into macroscopic cracks.
Moreover, it was generally found impossible to
model the effects of the damage using analyses
based on classical fracture mechanics approaches.

A more practical approach to modeling failure
behavior in composites is to quantify the damage
development on a continuum basis and relate it
to the material constitutive behavior. The goal of
such an approach is to permit accurate modeling
of the progressive loss of stiffness and concomi-
tant inelastic behavior due to the underlying mi-
cromechanisms of damage. Such modeling would
represent an extremely important achievement
from an engineering standpoint. For example,
consider a laminated composite plate with a cen-
ter hole made from a commercially available
composite (i.e., AS1/3501-6 graphite/epoxy) that
is loaded in quasi-static tension. Damage patterns
will develop around the hole and near the cor-
ners of the plate [2] inducing degradation in
material properties and forming a precursor to
general failure. An examination of the micro-
graphs readily indicates that a detailed microme-
chanical analysis is out of the question because
the characteristic scale length of damage is of the
order of pAm leading to the conclusion that a
continuum-based damage model would be far
more appropriate under these circumstances.

The analysis of highly localized singular fields
by means of continuum approaches has a long

history and there exist a number of well-estab-
lished techniques developed specifically for this
purpose. Most of these approaches involve smear-
ing out singular fields in some fashion and replac-
ing them by locally homogeneous fields, an exam-
ple being continuous dislocation theory [10,11].
More generally, there have recently been a
plethora of continuum damage approaches based
on the idea of an internal damage variable first
introduced in [12-20]. A common shortcoming of
most of these theories is that they are usually not
based on observed facts, but rather tend to use
models defined over low dimensional parameter
spaces that reflect preconceived notions of the
dominant failure mechanisms. Virtually no previ-
ous studies address this problem; indeed, this is
one of the primary purposes of this work.

An appropriate model for composite failure
behavior requires a large parameter space for its
description if it is to represent a physical fact in a
high-fidelity, objective manner. Because the phe-
nomena being considered are generally so com-
plex, it seems futile to formulate models in terms
of the individual failure events; rather, the cho-
sen model must be generic and phenomenological
in nature and must rely on extensive sets of
experimental data to identify the model parame-
ters. Only after these parameters are determined
can the model be related to particular failure
mechanisms.

The proposed procedure involves the determi-
nation of an energy density dissipation function
that has the dimensions of energy per unit vol-
ume and is postulated to be a property of the
material. Its volume integral equals the energy
dissipated during loading because of various in-
ternal failure events, and its value at any point in
the material is regarded as a measure of load-in-
duced internal damage. The energy dissipation
function thus captures the collective behavior of
these failure mechanisms without requiring an
explicit knowledge of these mechanisms, and,
moreover, can also be related to local stiffness
changes which, as will be demonstrated subse-
quently, lead to a form of nonlinear structural
behavior. In the sense that this material model
relates load-induced internal damage to nonlin-
ear structural behavior, it is similar to the models
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recently used in [21-24]. The present approach is
not limited to composites, but has application in
the general area of the mechanics of irreversible
processes where there is an acute need for a
reliable and accurate procedure to experimentally
determine equivalent dissipated energy density
functions. This issue is more fully addressed in
several works that deal with the thermomechani-
cal modelling of irreversible processes associated
with material behavior in general under mechani-
cal loading [25-27].

Part I of this work describes the basic and
computational scheme in determining the energy
dissipation function. This function is determined

from data obtained by means of an extensive
series of tests performed with NRL's In-Plane
Loader (IPL) [28-30]. This is a completely com-
puter-controlled testing machine capable of pro-
ducing multiple combinations of opening/closing,
sliding, and rotating boundary displacements. Part
II [31] will present the results for notched com-
posite specimens and some Naval structures.

2. Basic scheme

The flow chart in Fig. 1 describes the basic
scheme for determining the energy density dissi-

Fig. 1. Block diagram of processes involved in determining the dissipated energy function.
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pation function by application of the IPL (In-
Plane-Loader) tester and a computational proce-
dure. The left subpath in Fig. 1 describes the
experimental part of the identification process
and basically involves determining the energy dis-
sipated in the specimens. The initial step consists
of using the material and geometry specifications
to manufacture the test specimens. Next, the
loading specifications are applied by using the
IPL to load the specimens in the manner pre-
scribed. Finally, the measured boundary displace-
ments and loads are used to compute the total
energy dissipated internally in the specimens due
to strain-induced damage.

The remaining subpaths in Fig. 1 represent the
numerical and analytical part of the process. Ini-
tially, as shown in the right subpath, the strain
fields associated with each of the loading condi-
tions prescribed in the loading specification are

determined for the given material and specimen
geometry. This is achieved by finite element anal-
yses. A class of functions with free coefficients is
then defined such that one member of this class
can represent an analytic representation of the
dissipated energy as a function of the strain fields.
Finally, as indicated at the bottom of Fig. 1, the
particular function that is best suited for repre-
senting the dissipation energy is computed by
determining the values of the free coefficients
that minimize the difference between the experi-
mentally measured and the analytic representa-
tion of the dissipated energy.

The aforementioned procedure is a deconvolu-
tion procedure in the sense that the goal is to
extract a material property (i.e., the dissipated
energy density function) from information ob-
tained from the material in a particular physical
configuration, (i.e., the specimen), and thus, it is

Fig. 2. Computational implementation of the current approach in terms of the essential modules and their functional relationship.

74



P. W. Mast et al. / Theoretical and Applied Fracture Mechanics 22 (1995) 71-96

necessary to factor out specimen geometry ef-
fects.

The procedures in this approach have been
implemented in a highly automated fashion by a
sequence of computational activities that use the
analyses described in the following sections. Fig.
2 shows a data flow diagram view of these pro-
cesses and their relationships. The process of
acquiring the IPL data and the computation of
the measured total dissipated energy for the test
specimen is described in Section 3, and is achieved
through the processes "IPL15" and "GETABS,"
the latter of which evaluates the absorbed and
dissipated energy in the specimen. Section 5 de-
scribes the computation of the dissipated energy
density function. This is performed by
- using "PATRAN" to create the complete fi-

nite element model of the specimen,
- feeding the finite element data to the

"ABAQUS" finite element code via the
"PATABA" data translator,

- performing a linear elastic analysis to deter-
mine the strain field for each point in the
specimen, and

- piping the measured dissipated energy of the
specimen and the strain fields through the
"ABAPAT" translators into "ABSPAT."

- "ABSPAT" then computes the dissipated en-
ergy density function by deconvolution and uses
an optimization scheme to minimize the differ-
ence between the measured and the approxi-
mated values of the dissipated energy as de-
scribed in Section 3.

Control of the interprocess and intercomputer
communications is achieved through a user inter-
face module.

The simulation of material stiffness loss over
any particular structure as described in Section 2
of Part II [31] is achieved by
- using "PATRAN" to specify the finite element

idealization and loading specification of the
structure,

- piping the data to "ABAQUS" via the
"PATABA" data translator to compute the
strain fields associated with the selected load-
ing conditions, and

- piping the computed dissipated energy den-
sity function and the strain field via the

"ABAPAT" translator into "ABSORB" to ob-
tain the dissipated energy distributions over
the structure which can then be displayed us-
ing "PATRAN."

Again, control of the interprocess and intercom-
puter communications is achieved through an-
other user interface module.

While the energy dissipation function can be
approximately determined without explicit knowl-
edge of the damage-induced constitutive nonlin-
earities as discussed above, a more refined ap-
proximation requires a representation of the
full-scale nonlinear behavior. This information is
also of much interest in its own right since it is
needed for stress analysis when analyzing the
behavior of structural components loaded well
into the nonlinear response range where substan-
tial load redistribution is expected. Part III ad-
dresses the development of a representation of
the constitutive behavior in terms of the energy
dissipation function along with a refined scheme
for identifying the dissipation function itself.

3. Data acquisition through the in-plane loader
system

3.1. Material

Composites associated with structural applica-
tions range through a wide variety of materials.
Each different combination of matrix, fiber, fiber
coating (for matrix-fiber interface), layup angle,
stacking sequence, etc., corresponds to a different
material. The approach is specifically tailored to
organic matrix composites. In general, the partic-
ular material specification for an application in a
structure depends not only on the mechanical
considerations but also on a host of additional
considerations such as cost, electromagnetic and
thermal properties. Approximately 100 material
systems with graphite fibers ranging from ASI to
IM7 (Hercules Corp.) and several thermoset and
thermoplastic organic polymers have been tested
and characterized with the present approach.
Here the description is limited to the materials
selected for the applications discussed in this
paper. A brief description of these materials is
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given in Table 1 in terms of the matrix, the fiber,
and the angle of layup. Appendix A in [30] gives a
complete list of all the materials tested.

Most of the materials were received in the
form of panels out of which the specimens were
cut and machined to the specimen specification.

3.2. Specimen

The specimen geometry shown in Fig. 3 was
designed to satisfy the following requirements:
- The characteristic dimensions be large enough

relative to fiber diameter and lamina thickness
to ensure that the material could be analyzed
as either a single mechanically equivalent ho-
mogeneous anisotropic monolithic material, or
a collection of layers of varying orientations of
such materials.

- The overall specimen size be small enough to
keep material costs at a manageable level.

- A strain riser be present to guarantee that
high-strain regions occur well away from all
specimen boundaries.
Fig. 3 shows the single edge-notched specimen

that resulted. It is important to note that the
primary function of the notch is to act as a strain
riser to ensure satisfaction of the last require-

Table 1
Fragment of the materials data base describing four of the
materials utilized in the present study out of a total of 101
different materials

Item Resin Fiber Layup Supplier File Project

001 3501-6 AS1 + /- 15 Hercules mt-1 NAV-SEA
002 - - + / - 30 - mt-2 -
007 - AS4 + / - 60 - mt-7 -
040 PEEK - + /-60 ICI mt-40 -

ment above, and not to mimic a crack in the
fracture mechanics sense.

3.3. Loading

The experimental system used for measuring
the dissipated energy in the test specimens is the
In-Plane Loader System (IPLS) [28,30]. The pri-
mary component of the IPLS is a custom-made,
fully automated testing machine (IPL) shown in
Figs. 4(a) and 4(b). The remaining components of
the IPLS are a computer that fully controls the
IPL and a graphics processor that is used for
various postprocessing operations in conjunction

1-0.6" -1

0.04"

0.1"*'.

0.5"

+,.

L.5

(a) (b)
Fig. 3. (a) Schematic of the specimen and the associated areas. (b) Photos of representative specimen before testing (left) and after
testing (right), for material 2 with 3501-6 resin ASI fiber and + / - 30° layup and loading path 11.
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(a)

(b)
Fig. 4. (a) Side view of the in-plane loader. (b) View of the grip area of the in-plane loader.
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A. LOADING FRAME
B. HYDRAULIC ACTUATORS
C. MOVABLE HEAD
D. FIXED HEAD
E. SPECIMEN GRIPS
E SPECIMEN LOADER/UNLOADER
G. TEST SPECIMEN
H. VIDEO CAMERA
1. VIDEO MONITOR FOR POSITIONING DEVICE
J. MAIN TERMINAL
K. COMPUTER
L. GRAPHICS PROCESSOR
M. GRAPHICS TERMINAL

Fig. 5. Schematic representation of the In-Plane Loader System.

with the computer system. A detailed description
of this testing system can be found in Figs. 5 and
6. Refer to Appendix B in [30] for a description

of the IPLS components. The objective of the
IPLS is to control the rigid body motion of the
boundary of the specimen that is held by the

A. SPECIMEN
B. FIXED GRIP
C. MOVABLE GRIP

js D. 6-D DCLVDT X/DUCER
rG E. 3-D LOADING CELL

F. DCLVDT
C. ACTUATOR

Fig. 6. In-Plane Loader's closeup schematic view of the grip area.
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movable grip. Because the actuators are con-
strained to move in a plane parallel to the speci-
men, the resulting motion involves only three
degrees of freedom relative to any frame of refer-
ence on that plane.

The relation between the prescribed actuator
displacements and the resulting grip motion is
illustrated in Figs. 7(a) and 7(b). It is important to
note here is that the grip motion can be resolved
into three basic components: sliding u,, open-
ing/closing uy, and rotation w. Specified combi-
nations of actuator displacements, therefore, map
into particular combinations of these three basic
motions. It is convenient to use a reference frame
located at the initial position of the notch tip for
both the boundary displacements (denoted by u
relative to this frame) and the resulting reaction
forces f. Fig. 7(c) illustrates these displacements
and tractions and the resulting deformation of
the specimen.

The decomposition of the applied displace-
ments relative to this frame into a sliding motion

uO, an opening/closing motion ul, and a rota-
tional motion u2 is shown in Figs. 7(d)-7(f) and
Figs. 8(b)-8(d), respectively. For dimensional ho-
mogeneity, u2 is defined as the length of the arc
traveled by a point 1 in. away from the notch tip
rigidly connected with the moving grip along the
direction of the rotation, instead of using the
actual rotation in radians. Subsequent analysis
requires that computing the energy dissipated
within the material at a discrete set of observa-
tion points as the specimen is loaded by applying
a predetermined series of boundary displace-
ments uP. Here p = 1 ... n and n denotes the
number of observation points. It is advantageous
to think in terms of a three-dimensional displace-
ment space with coordinates (u0 , u1, u2 ). The
issue then is how to select a representative family
of paths that cover the space and how to sample
along each path.

It is not expected to observe amy significant
path-dependent behavior during this initial load-
ing phase. The mechanical response of the mate-

+

(a) tv) tI)
Fig. 7. Schematic of the equivalence between the (a) actuator motions and (b) the three modes of motion, as well as (c) the process

of composing an arbitrary loading combination, from linear combinations of the three basic motions: (d) shear, (e) opening/closing
and (f) rotation.
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I . I

Fig. 8. View area of the IPL specimen in the grips before applying any loading (a), after applying some translation of the upper grip
parallel to the x-axis (b), parallel to the y-axis (c) and after applying rotation about the origin of the x-y frame of reference (d).

rial at any point in this space is thus expected to
depend only on the current state of internal strain
and to be independent of the particular path
followed to achieve this state. This type of path
independence is consistent with the observations
made in [33] and greatly simplifies matters be-
cause it permits us to cover the displacement
space with a family of loading paths selected
solely on the basis of convenience.

Towards this end, it was decided to cover the
boundary displacement space with a set of 15
uniformly distributed radial loading paths as indi-
cated in Fig. 9. Note that because of geometry
and material symmetry about the x axis (Fig.
8(a)), only the half-space corresponding to posi-
tive sliding displacement (u0 > 0) need be consid-
ered. The required set of observation points is
generated by sampling along each path at 50
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Fig. 9. Definition of the proportional loading paths in the
boundary displacement space (loading path 11 is a representa-
tive case), and the uniform distribution of the 15 paths used in
the present methodology.

distinct points starting from 0 mils and terminat-
ing at a maximum of 50 mils of displacement
yielding a total of 750 points per material system.
Then a particular test in that the actuator mo-
tions are continuously varied corresponds to a
specific path in this space. This path can be
represented by a vector originating from the ori-
gin of the space and components given by ui = ra
for i = 0, 1, 2, where ai are the coordinates of the
unit vectors along the loading path direction, and
r is a scalar multiple denoting the proportionality
of the path and ranging from 0 to 0.05 in. in steps
of 0.001 in. corresponding to the successive ob-
servation points. Only 15 specimens are required,

and 50 observations per loading path are ob-
tained from a single specimen. Table 2 shows the
coordinates ai of the unit vectors for the selected
loading paths.

The locus of the end points of all loading paths
for the same increment is a half-sphere as shown
in Fig. 9, where loading path 11 at an arbitrary
increment is presented as an example.

3.4. Testing procedure

The IPL is instructed to apply loads along the
designated loading path for each specimen. Be-
cause each test is performed twice to establish
the degree of reproducibility, 30 (2 per loading
path) specimens are required for analyzing a sin-
gle material. After the IPL calibration phase is
complete, a stack of thirty specimens from the
same material is loaded on the magazine of the
automated specimen feeder of the IPL and the
testing phase follows. The following sequence of
events is repeated for each specimen.
- The specimen is fed from the specimen maga-

zine into the grip area of the I1L. I
- Pressure is applied on the hydraulic grips to

clamp the specimen with the appropriate force
to prevent slippage and crushing of the speci-
men.

- The operator uses the digital imaging system of
the IPL to control the positioning of a crosshair
on the image of the area between the grips as
acquired by the overhead video camera. Notch
tip location and selected points between the
grips are thus automatically fed into the com-

Fig. 10. Block diagram of the computational modules and resources involved with the determination of the measured total
dissipated energy.
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MT-2.ASC

_Date_. ._TimeT.iExptr___._atrl_.MSpecnu_._Thick_._Grpopn.Width_ -
10/20/87 13:31:44 MAST AS1-30 34 0.143 0.594 0.462
_Tran-1_._Tran-2-..Polr-1-..Po1r-2-._Polr-3-.. PadthkCefCoefr.... _ . N3 _

0.058 -0.369 -90.000 -45.000 0.050 0.192 0.250 100.000
_PFidc- 1-._Fidc-2_._Lowr-l_._Lowr-2_._-Notc-l_._-Notc-2_. _ N1- _.___2 _

7304 2040 13648 11184 8008 7720 50 1

No.Absorption. _Disp-X_. _.Disp-Y_._Rotation_._Force-X_._Force-Y_._-moment_

1 0.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+0 0.OOO+u

2 O.OOOE+00 -0.756E-05 -0.851E-04 -0.232E-04 -0.569E+00 -0.668E+00 -0.277E+01

3 -0.186E-02 -0.118E-03 0.168E-03 -0.335E-03 0.151E+02 -0.502E+02 -0.137E+02

4 0.192E-01 -0.750E-04 -0.385E-03 -0.11OE-02 0.140E+02 -0.637E+02 -0.109E+02

5 0.191E-01 -0.220E-03 -0.475E-03 -0.175E-02 0.151E+02 -0.906E+02 -0.116E+02

6 0.142E-01 -0.374E-03 -0.473E-03 -0.236E-02 0.168E+02 -0.118E+03 -0.127E+02

7 0.461E-01 -0.486E-03 -0.944E-03 -0.308E-02 0.132E+02 -0.146E+03 -0.581E+01

8 0.209E-01 -0.634E-03 -0.923E-03 -0.371E-02 0.156E+02 -0.172E+03 -0.141E+02

9 0.591E-01 -0.763E-03 -0.128E-02 -0.441E-02 0.1711+02 -0.198E+03 -0.635E+01

10 0.758E-01 -0.870E-03 -0.168E-02 -0.513E-02 0.185E+02 -0.225E+03 -0.941E+01
11 0.940E-01 -0.970E-03 -0.218E-02 -0.587E-02 0.195E+02 -0.253E+03 -0.164E+02

1-0/20/74E+00 -0.109E-01 -0.105E-01 -0.290E-01 0.592E+02 -0.989E+03 -0.128E+03

46 -0.341E+00 -0.112E-O1 -O.lllE-Ol -0.298E-01 0.579E3+02 -O.l0lE+04 -0.138E+03

47 -0.771E+00 -0.112 E-01 -0.100 E-01 -0.304E-01 0.580E+02 -0.103E+04 -0.149E+03

48 -0.569E+00 -0.122E-01 -0.115E-01 -0.312E-01 0.580E+02 -0.106E+04 -0.155E+03

49 -0.648E+00 -0.126E-01 -0.118E-01 -0.319E-01 0.560E+02 -0.108E+04 -0.164E+03

50 -0.787E+00 -0.1882-03 -0.-0.E-01 0.655-01 0.557E+02 -0.113E+04 -0.179E+03
_Date_. _Tfime. _.Exptr_._Matrl1_. _Specnu_. _Thick__._Grpopn .Width_
10/20/87 13:32:05 MAST ASI-30 35 0.143 0.594 0.462

_Tran-l_._Tran-2_._Polr-l_._Polr-2_._Polr-3_._Padthk_._CQoefrc_.___N3 _
0.058 -0.283 -90.000 0.000 0.050 0.192 0.250 100.000

_Fidc-l_._Fidc-2_._Lowr-l_._Lowr-2_._Notc-l_._Notc-2_. _ Nl_ .___N2 _
7304 2040 13648 11184 8008 6388 50 1

No. Absorption. _Disp-X_. _.isp-Y_. -Rotation- -Yorce-X__._Yorce-Y-_._Moment _

1 O.OOOE3+OO O.OOOE3+OO O.003+00 O.OOOE3+OO O.OOOE+OO O.OOOE+OO O.OOOE-+OO

2 O.OOOE+OO -0.312E-04 0.193E-03 0.462E-04 -0.308E3+00 -0.287E+00 -0.514E+Ol

3 0.337E-02 -0.487E-05 -0.468E-05 0.671E3-04 -0.947E+01 -0.400E+02 0.137E+02

4 0.937E-02 0.188E-03 -0.355E-03 0.655E-04 -0.177E+01 -0.113-E+03 O.ll9E+02

.

]1 File

Header

First
Specimen
Header

First
Specimen

Data

Second
Specimen
Header

Second
Specimen

Data

Fig. 11. Typical parts of file containing the measured through the in plane loader data.
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puter of the IPLS, to establish the frame of
reference.

- The remainder of the test is performed auto-
matically, with the computer control system
measuring specimen thickness and controlling
the grip pressure, selecting and applying incre-
mentally the loading path. The system moni-
tors and stores the boundary forces and dis-
placements for each loading step, and using
this data the total energy dissipated in the
specimen for each loading increment in the
loading path is computed and stored along
with the force displacement data.

3.5. Computational and data description

Fig. 10 is a data flow diagram showing the
computational process corresponding to the left
subpath of Fig. 1. The data from the A/D and
D/A converters are directed to module "IPL15"
through the input/output driver module. "IPL15"
controls the data acquisition and control process
by controlling the following operations:
- it controls the positioning of the actuators and

the associated hardware;
- it collects the force and displacements (f, u)

at the 50 sampling points along the loading
path from the transducers;

- it then transforms them into those referring to
the frame of reference attached on the tip of
the notch as in Fig. 8(a);

- it computes and displays the total and instanta-
neous values of the total dissipated energy lost
in the specimen due to damage;

- it finally stores all measured quantities in files
(one per material). Here the term "material" is
used for a laminate of specific fiber, matrix,
and lamination angle.
Each file contains the data for all specimens

and loading paths for a given material. Each file
consists of a header and a series of blocks that
contain information pertaining to each specimen.
The header is at the beginning of the file and
cor tains the original file name. Each specimen
block has its own header (which is seven records
long) and fifty data records (one for each experi-
mental point on the loading path). The header
for each specimen contains all the pertinent in-

formation associated with the corresponding
specimen and the respective loading path. Fig. 11
presents a section of one of these files that corre-
sponds to the second material of Table 1, i.e.,
graphite epoxy with AS1 fiber and 3501-6 resin
with layup angle + / - 30°. The fields in the data
records, from left to right, are experimental point
number, total dissipated energy D, boundary dis-
placements (u0 ,ul, and u2 ), and boundary forces
(fofj, and f2).

Another process called "GETABS" extracts
the dissipated energy values from the afore men-
tioned file and stores them into files ready to be
used from the resources available for the deter-
mination of the dissipated energy density func-
tion. All these processes were originally executed
on a PRIME 750 minicomputer, but recently an
effort has been undertaken to recast them in a
more contemporary form on the NeXT cube
computing platform, and have been recently
ported to "Mathematica" code.

4. Total dissipated energy

The procedure for computing the energy dissi-
pated internally in the specimen during an IPL
test will be described. In what follows, the super-
script p = 1, -* *, 50 denotes an experimental point
on a given loading path; I = 1, ,15 denotes a
particular loading path; r = 1,2 denotes a particu-
lar test repetition; and subscript i == 0,1,2 denotes
the components of the boundary forces and dis-
placements.

4.1. Total energy

Consider first the total energy imparted to the
specimen for each experimental point p as func-
tion of the boundary displacement vector u. These
energies, denoted as WP, can be computed from
the measured boundary forces and displacements
by using the standard definition of mechanical
work. Thus

WP = WP(u) = Ju fP - ds, (1)
0o
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or in component form,

JP = f ufP ds1 = f fP ds0 + f 'f- ds,
0 0 0

+f 2f P ds2 . (2)
0

Each term in Eq. (2) represents the energy stored
in the specimen due to one of the measured
force-displacement pairs (fif, uto) and is denoted
by WiP. Hence, WP can be expressed as the sum

WP = WO + WIP + W2P. (3)

The integrals in Eq. (2) can be approximated
using a discrete representation, i.e.,

1 P
WOP = 2 aE a +f ta)(u -U a _ ),(4)

a=1

1PWP= _I (aW +fa-1)(U a _ Ua-I) (4)

Wfp =~ 
a=1

f P
W2P = 2 (f2 +f)Ua _Ual

or in general
1 P

Wi 2aE(i-1 (, i)

for i = 0, 1, 2. (5)

This approximation process is graphically de-
picted in Fig. 12 where the quantities in the
summation are defined geometrically on a repre-
sentative traction vs. displacement graph.

The area below the curve represents the en-
ergy WiP for loading up to point p as the sum of
all trapezoids of area !(a +fa-l)(ui - ua ).
The total energy WP can now be computed by
substituting Eq. (5) into Eq. (3) and taking the
sum of the three terms. Thus,

1 2 P
WP = 2 E E (fia +fa- )(U6 a-1),

2i=O a=1 

for p = 1, 2, -*,50. (6)

Consider now the situation when the specimen
unloads. Assume that when the specimen is un-
loaded proportionally from any point a of the
curve in Fig. 12, the unloading occurs elastically
along a line from the point a to the origin. This
assumption is largely based on observations made
during the early years of IPL use when unloading
data were collected; it was found then that almost
all specimens tested unloaded linearly and showed
a maximum 2% permanent displacement set.
These permanent displacements are likely a con-
sequence of initial stresses introduced during
manufacture and were deemed small enough to

ti *

ta
t.

aD.I

zie_ , .
i

0 4 *

f

a - By a 50

Ad 3

Ui
Ui

Fig. 12. Schematic representation of the integration scheme utilized for the computation of WQP as the sum of the rectangular slices
under the load-displacement curve and of the energies associated with the loading of the specimen up to the point p.
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ignore. This characteristic non-metal-like behav-
ior during unloading has also been observed by
other investigators [33] and it is currently at-
tributed to the propensity of organic composites
to form microcracks instead of flowing plastically.

4.2. Unloading

During unloading, a portion of the total energy
WP is recovered because of the elastic nature of
the unloading response. This recoverable energy,
denoted by a componentwise basis as RP, is sim-
ply the triangular area under the line from a to
the origin, or

RP = ifiPuif, for p = 1, 2, -,50. (7)

Knowing the available energies WiP and the
recoverable energies Rf, it is a simple matter to
compute the energy DP dissipated in the speci-
men. Thus, on a componentwise basis, the energy
dissipated in the specimen as it is loaded up to
point p is simply the difference

DPf=WP-R?, for p=,2,*** 50' (8)

and, in graphical terms, is just the shaded area
under the load-displacement line in Fig. 12. Sub-
stituting the expressions for the total and avail-
able energies from Eqs. (5) and (7) for each
component i in the relation above, therefore,
gives for DIP:

1 P 1
D P (fa +fa l)(u - a-1) _ _fpup

2 a=

for p = 1, 2, - *,50. (9)

The total dissipated energy DP (the energy which
appears in the second column of the acquired
data file shown in Fig. 11) can now be computed
by summing D/P componentwise and results in

2 P
Et E (fia +fia-l)(Uia_ Ua-1)D = - I i

2 i=O a=l

2 1
_ E 2t-fPuP forp=1,2, ,50. (10)
i2

The dissipated energy computed this way can
be considered to be a measured value since it is
derived directly from measured quantities and

Table 2
Coordinates of load path unit vectors for each one of the 15
loading cases applied by the IPL.

Loading ao at a2

1 0.000 - 0.707 - 0.707
2 0.000 - 1.000 0.000
3 0.000 - 0.707 0.707
4 0.500 -0.500 -0.707
5 0.707 - 0.707 0.000
6 0.500 - 0.500 0.707
7 0.707 0.000 - 0.707
8 1.000 0.000 0.000
9 0.707 0.000 0.707

10 0.500 0.500 -0.707
11 0.707 0.707 0.000
12 0.500 0.500 0.707
13 0.000 0.707 -0.707
14 0.000 1.000 0.000
15 0.000 0.707 0.707

the only sources of error are from the discrete
numerical integration described and the quanti-
zation error of the data acquisition process. How-
ever, the very operation of integration also serves
as a noise/error reduction methodology and
works more in a beneficial rather than a detri-
mental manner in this case. To the authors'
knowledge, these energy values represent the only
attempt to measure dissipated energy caused by
mechanical deformation in composite materials.

4.3. Evolution of displacements, tractions and dissi-
pated energies

Fig. 13 is a graphical representation of the
boundary displacements and tractions as well as
the associated total and dissipated energies for
the first specimen for loading path 11 for mate-
rial AS1-30 (second row of Table 1). Loading
path 11 does not have any rotation applied on the
specimen as can be seen from Table 2 and from
Fig. 9. This results in the apparent zeroing of the
curve in Fig. 13(a.2), which consequently results
in the blank energy graphs Figs. 13(c.2) and
13(d.2). However, due to the other two displace-
ment components, there is a force reaction in the
rotation direction as is shown in Fig. 13(b.2).

The dissipated energy curves start with values
very close to zero and suddenly rise steeply. This
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Fig. 14. Dissipated energies for specimen I (a), specimen 2 (b), their average value (c) and the absolute difference between the two
(d), for material 2 (AS1, 6501-6, + / - 300) and loading path 11.

happens as the corresponding displacements ex-
hibit an abrupt increase and the tractions reach a
maximum value and then rapidly decrease. This
point can be interpreted as defining a transition
between purely linear elastic material behavior
(i.e., no energy dissipation) and the point at which
the material first exhibits nonlinear behavior with
accompanying energy dissipation.

Summation of the er zrgies for the three com-
ponents in Figs. 13(c.0), 13(c.1), and 13(c.2) yields
Fig. 13(e) for the energy absorbed from all three

component combinations in the specimen. Simi-
larly, summation of the dissipated energy compo-
nents in Figs. 13(d.0), 13(d.1), and 13(d.2) yields
the total energy lost in the specimen shown in
Fig. 13(f). The morphology of the displacement,
traction, and energy evolution curves for the rest
of the loading paths is not necessarily identical to
that of loading path 11.

To compare the repeatability of the process,
Fig. 14 shows the dissipated energy evolutions for
both specimens used on loading path 11 together

12-

10.

8-
B
.*

I _~ 4-
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10 20 3(
fl If (mils)

(a)

12

10

my 8
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Q4
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40 50

Fig. 13. Evolution of displacements (a.0, a.1, a.2), tractions (b.0, b.1, b.2), total absorbed energies (c.0, c.1, c.2), dissipated energies
(d.0, d.1, d.2), total absorbed energy (e), and total dissipated energy (f), versus the magnitude of the experimentally imposed
displacement vector 11 u 11 of loading path 11 for the first specimen of material 2 (AS1, 3501-6, + / - 30°).
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with their average and absolute difference evolu-
tions. As it seen in Fig. 14(d) the specimens
behave almost identically. A small difference of
the order of 12% appears at the last experimental
point, very deep in the nonlinear region where
the enormous amount of damage has made the
material more unstable than it is in the linear
region. The root mean square error (RMS) be-
tween the two values of the dissipated energy for
the two specimens from the same material has
never been found to exceed 5% for all materials
tested.

An entire IPL test takes about 10 s, five of
which are spent installing the specimen in the
grips. As a result, the specimen testing rate can
be 360 specimens/hour. At this rate, data can be
collected for 12 different materials per hour. The
overall daily production rate for an 8-hour day is,
therefore, 960 specimens, or 96 different materi-
als, or 24 materials systems (since we use 4 layup
angle combinations for each fiber-resin combina-
tion). The total number of experimental points
per fiber-resin combination is 6000. Each loading
path corresponds to 2.4 KB of data while 288 KB
are acquired for each material system. The daily

1

1

iU*q

throughput capacity of the acquisition process
approaches 20.74 MB/day.

A spatial map of the absorbed energy density
over the specimen for each experimental point
can be identified by using the simulating capabil-
ity described in Part II [311. Fig. 15 shows the
evolution of the dissipated energy distribution for
the experimental points corresponding to 20%,
40%, and 60% of the total load (points 10, 20,
and 30) in association with the total dissipated
energy evolution curve for the specimen associ-
ated with loading path 11, repetition 1. These
distributions were obtained by using the struc-
tural simulator described in Part II. In these
distributions, the darker the shade of gray, the
higher the value of the dissipated energy density.
From this figure it can be deduced that for the
low load level corresponding to 20% of the total,
the total dissipated energy evolution curves shows
that almost the entire specimen is in the linear
region because of the very small value of the
dissipated energy, and the corresponding distri-
bution shows indeed that only a very small region
on the upper right corner entered into the non-
linear domain with very small values. As the load

ullul (mils)
Fig. 15. Distributions of dissipated energy for 20%, 40%, and 60% of the total loading, associated with corresponding the total
experimentally measured dissipated energy for the first specimen of loading path 11.
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increases, the total dissipated energy of the speci-
men increases and, as expected, more areas in
the specimen enter into the nonlinear region,
while the old ones intensify their absorption lev-
els.

5. Computational procedures

The right and lower subpaths in Fig. 1 repre-
sent the flow of activities related to the determi-
nation of the dissipated energy density function
k. It is important, however, to clarify the range of
hypotheses and assumptions employed in the pre-
sent analysis to illustrate how the procedure re-
lates to the so-called inverse approach.

5.1. Data processing

Fig. 16 describes the computational process
used to obtain the dissipated energy density func-
tion in terms of its evaluation on discrete points
over the strain space. A user interface that con-
trols all interprocess and intercomputer commu-
nication is the mechanism by which the user
controls the overall process. The "PATRAN"
solid modeling package is used to define the

geometry, material, and loading specifications for
the finite element model of the specimen struc-
ture, which in turn is fed into the "ABAQUS"
finite element code via the "PATABA" format
translator. The output from the linear strain anal-
ysis from "ABAQUS" is then translated from
"ABAPAT" into files containing the strain and
displacement distributions for the corresponding
loading cases that are displayable by "PATRAN."
The "ABSPAT" module developed at NRL then
- uses the analysis results for all the loading

cases as well as the experimentally measured
values of the dissipated energy from the files
discussed in Section 3.5 to synthesize the quan-
tities necessary for estimating the 125 coeffi-
cients that describe the dissipated energy func-
tion,

- carries out the estimation, and
- generates one file per material system that

contains the 125 coefficients.

5.2. Strain field

The measured absorbed energy is a function of
specimen geometry, loading condition, and mate-
rial. To factor out the influence of specimen
geometry and loading and to obtain a dissipated

Fig. 16. Block diagram of the modules used to compute the dissipated energy coefficients for each material, along with
computational resources utilization.
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energy function that depends solely on the mate-
rial, it is necessary to develop a deconvolution
procedure. Consider a structure with geometry s,
consisting of a particular material m, and under a
specific loading condition 1. A strain state exists
at any point described by the position vector x.
The strain vector E corresponding to this state
with the classical in-plane components (e£X, -- YY

and ely) is a function of s, m, 1, and x; i.e.,

£ =£E(5 1, m, x)- (11)

For a specific specimen, a subscript 0 will be
used to denote the corresponding geometry and
material as So and mi, respectively. It will be-
come evident from the analysis that the strain
field for each one of the loading cases needs to
be determined. In the ideal case, these fields
should be experimentally measured along with
boundary tractions and displacements in the IPL
tests. This will be a feature of the new generation
of NRL's automated loading machines; however,
the current generation has no such capabilities.
The results and analysis presented here are based
on an alternative approach. More specifically,
reference is made to estimate the strain field by
discretizing the geometry of the specimen into

1 .5" ____,___-_III II I I IT1 01

1- 0.2" -

150 elements as shown in Fig. 17. Apply the
loading and boundary conditions by the IPL on
the specimen, and compute the in-plane strains
by running an appropriate number of linear elas-
tic finite element analyses using the code
"ABAQUS". The selection of the linear analysis
was based on the fact that in very few of the
experiments were specimens observed to fail in a
way that would indicate that very large amounts
of energy had been dissipated by internal mate-
rial damage. The initial purpose was to establish
an analytical tool based on experimental evidence
for predicting the onset of nonlinear response
and an approximation of this response, rather
than the exact nonlinear material behavior. The
three strain components corresponding to the
centroids of the elements of the specimen struc-
ture so were stored in files organized according
to loading case. For practical purposes, instead of
running 15 loading cases (one for each loading
path), only the cases corresponding to the loading
paths (1, 0, 0), (0, 1, 0), and (0, 0, 1) correspond-
ing to pure shear, opening, and rotation displace-
ments, respectively, were run. This was because
all other cases could be synthesized by linear
superposition.

- -T - - - - - - -

, P"

x

Fig. 17. Mesh for the view area of the specimen.

I
I I -

90

Y t

, 



91
P. W. Mast et al. / Theoretical and Applied Fracture Mechanics 22 (1995) 71-96

5.3. Dissipated energy density function

Let 4 denote the dissipated energy density per

unit of volume of material. It depends on the

strain vector £ and the material, i.e., 4 (e, m).

This function can be one of an arbitrarily large

set of functions. For computational efficiency, we

assume that the effect of the material and strain

dependence can be decomposed by an appropri-

ate choice of form for this function. This can be

done by selecting a form expressed in terms of a

set of coefficients that depend solely on the mate-

rial properties, and a set of constant basis func-

q

54

4

3

tions. For simplicity, the following linear combi-
nation case is selected:

(E im) =0(e, C) = ci(m)Xi(E)

+ +Cm(M)Xn(e)=c,(m)Xl(E).
(12)

In this form, c represents the vector of the mate-

rial depended coefficients ci, and Xi represents

the basis functions depending only on strains e
and defined at a total of n distinct points dis-

tributed over the strain space. Eq. (12) can be

thought of as being an interpolation function

Fig. 1. Sip re to n atssfutinXx

Fig. 18. Strain space representation and characteristic representation of an indicative basis function.
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allowing evaluation of 4) on points other than the
ones used to define the basis functions.

For the case under discussion, 125 (i.e., 5 per
axis) such points were selected to be uniformly
distributed in the Cartesian representation of the
components of the strain space. Fig. 18 shows the
cuboidal distribution of the points where the ba-
sis function for our case is defined. To have a
unique number characterizing each one of the
points where the strains are evaluated, three in-
dices o, p, and q have been chosen along the
6

xx,EyyrCxy axes, respectively, to count from 1 to
5 as the (opq) frame of reference indicates in Fig.
18. This resulted in using a counter i for the
points associated with these indices in the follow-
ing relationship:

i=o + 5( p - 1) + 25(q - 1)

for o, p, q = 1," - -,5. (13)

The increments along the three orthogonal
strain component directions in this space are
equidistanced and the step is the quotient of the
maximum value for any of the strains obtained
from the finite element analysis of the structure
under consideration divided by 4 (number of
spaces between the discrete points of evaluation).
The basis functions have the property of being
equal to the value of the function at the evalua-
tion point (in this case, 1), and zero at any other
evaluation point of their domain. A consequence
of this is that the value of the function 4 accord-
ing to Eq. (12) at an evaluation point is equal to
the coefficient of the basis function for that point.
This, it turns out, is a very convenient feature for
the solution scheme described later in this sec-
tion.

Fig. 18 gives a graphic definition of how a basis
function behaves. The five successive planes have
been shifted out of the strain space and have
been drawn such that the vertical axis represents
the value of the function X. The function has
been evaluated at the point defined by (o = 4, p
= 3, q = 3), 'or (i = 64), and, as can be seen, the
value of the function is zero at all nodal points of
the strain space except for the point where it
evaluates to 1. There it remains the same regard-
less of the evaluation point. By letting ei signify

the strain vector for each point i for all 125
labeled points in the strain space, the basis func-
tions with these properties can be expressed as:

i =j for i, j= 1, 2,-* , 125.

(14)

Introducing this relation to Eq. (12), for one of
these points i there results

4)(ei, m) =C1i(m)x1 (ei) + *- - +Ci(M)xi(E)

+ ... +Cm(M)Xn(Ei),

0(ei, m) = c(m)0 + * * * +c1(m)1

+ * , +Cm(M)C,

which after evaluation yields:

(15)

O(ei, M) = cAMi) (16)

Thus, Eq. (12) may be viewed as an interpola-
tion function that linearly determines the value of
the dissipated energy density function at any point
in the strain space as long it lies in the cuboidal
region spanned by the 125 points. The problem of
determining the analytical expression for 4 is
now reduced to determining the coefficients ci,
such that the family of functions represented by
Eq. (12) is restricted to one which represents a
"best fit" of experimental data.

The total energy c dissipated throughout the
volume of the structure under consideration (so)
for each loading condition 10 can be computed as
the volume integral of the dissipated energy func-
tion over the spatial extent of the structure:

:= f 4)(E c) dx.
as,

(17)

By virtue of Eq. (12), this relation reduces to

f = | (c1(,m)X1(e(lo, x))
as*

+ ... +cjm~i)xn_(1o, x))) dx

=J c1(m)xi(-((1O, x))dr.
aso

(18)

Assuming that D represents an experimentally
obtained value of the total dissipated energy for a
given structure so and a given loading condition

92
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10, there is an appropriate selection of the coeffi-
cients ci such that the value obtained from Eq.
(18) approximates this measured value. This can
be expressed by

cP(so, lo) +e=D(so, la), (19)

where e expresses the error between the two
values of the dissipated energy.

5.4. Solution and optimization scheme

For the case of the particular specimen geom-
etry so and the particular loading case that corre-
sponds to a corresponding experimental point p,
the integral of Eq. (18) can be equivalenced by a
discretized form indicating the sum of the dissi-
pated energy of each of the 150 elements of the
specimen structure. Eq. (19) can now be rewritten
as:

150

A ciXi( 4e) VeP + eP = DP, (20)
e=1

where VP represents the volume of the element e
for the loading point p. Since this represents one
of many relations, it follows that different incre-
ments of the index 1 corresponding to different
loading conditions, the set of these relations can
be represented in a matrix form:

[X]c+e=d, (21)

where [X], c, and d matrices have elements de-
scribed by XiP = E'52 1Xi(eP)VP' and d respec-
tively. We selected third point from each loading
path (17 experimental points per loading path)
for all 15 loading paths for a total of 255 experi-
mental points, and d is constructed as follows:

dT = [[DP] T, [DP] T, * [Do PIT ** [DP IT]

(22)

with p = 1,4,. . .,49, where

[DP ] T= [ D,, D 4, D,', -* , D 49] (23)

where the elements are obtained from Eq. (10)
for each loading path 1.

Eq. (21) represents an overdetermined system
of 255 equations with 125 unknowns. However,
the requirement that the dissipated energy is a
monotonically increasing function of the strains

imposes a new set of constraints that can be now
be expressed in the following inequality:

[M]cŽ0. (24)
The array [M] has 125 columns and 100 rows,

since it represents a tuple of 100 additional con-
straints. It is defined as:

[ M ] = MT , (25)

MTo

where MT for c = 1,...,100 are row matrices
corresponding to each one of these constraints.

Thus the problem of determining the 125 coef-
ficients ci is reduced to the solution of Eq. (21)
under the inequality constraints in Eq. (24). This
combination provides a total of 355 relations, and
it represents a classical optimization problem with
inequality constraints where the objective is to
minimize the function (objective function) 11l e
such that both Eqs. (21) and (24) are satisfied.
This is a standard problem in quadratic program-
ming and is readily solved using well-established
numerical techniques [34]. A vector. space graphi-
cal representation of the entities involved in the
optimization scheme can be found in the Ap-
pendix.

In light of the preceding considerations, the
dissipated energy is now fully determined at all
125 points of the strain space since, as discussed
previously, the computed coefficients represent
the values of the dissipated energy at those points.
The dissipated energy can, therefore, now be
computed at any point in any material that has
been tested. The strains determine the particular
subregion in the cube spanning the strain space,
such that a linear interpolation performed be-
tween the values of the dissipated energy at the
surrounding point establishes the value of the
dissipated energy at the intermediate point.

6. Conclusions

In conclusion, an approach is formulated to
characterize failure behavior and degree of load
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induced internal damage in composite materials
and structures. This approach is based on a sys-
tematic experimental procedure to observe re-
sponse of composite materials subjected to multi-
axial load environment. The energy dissipated by
internal failure mechanisms is used as a measure
of internal damage and is characterized by an
energy dissipation function, which is determined
by means of a deconvolution procedure using
data provided by NRL's automated In-Plane
Loader.

Use of this information as a failure analysis
and prediction tool is demonstrated by simulating
the structural response of some naval structural
components made from several different compos-
ite materials. Part II [31] of this work will display
the dissipated energy density distributions in
composite specimens and naval structures alike.

Part III [32] will present a general theory that
includes the derivation of the constitutive behav-
ior of damaged composites.

Appendix: A vector space representation of the
optimization scheme

A vector space geometrical representation of
the optimization scheme provides for a simple
explanation of the optimization procedure. As-
sume for the sake of simplicity (and because we
cannot represent entities having dimensions
higher than three on paper) that the quantity
[XIc can be represented as a vector c in a
two-dimensional space X with Xl and X2 being
the corresponding basis vectors as shown in Fig.
19. The columns of the array [X] contain the
components of the basis vectors Xl and X2 in
terms of a higher dimensional space D, the higher
dimensions of which are denoted by the axis N
normal to the space X.

Assume now that another vector d lies in the
higher dimensional space D of which the space X
is a subspace. The difference of these two vectors
then lies in this higher dimensional space and is
another vector denoted as e which expresses the
error between the two vectors, so that

Fig. 19. Geometrical representation of the optimization pro-
cedure describing (a) the solution for Eq. (C2), (b) for the
constraints, and (c) for both equation and constraints.

This can be rewritten in the matrix form

(26) [X]c+e=d.
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The objective of the process is to determine a
vector c0 such as the magnitude (or norm) of the
vector e takes its minimum value eo according to

min Ile 11 = eo. (28)

In the case of the usual Euclidean norm, i.e.,
the square root of the sum of the squares of the
components, c0 turns out to be the projection of
the vector d of space D onto the space X, and
therefore c0 is normal to this space.

Fig. 19(b) deals with the effects of inequality
constraints case. Suppose M1 , M2 are the vectors
corresponding to the matrices MT and MT which
also lie in the space X. Then, the inequality
constraint of the form

[M]c 2 0 (29)

specifies that the only acceptable solutions for c
must lie in the region of X (shaded region)
defined by the interior of the two lines which also
lie in X and are normal to the vectors M1, M2

respectively.
However, as can be seen in Fig. 19(c), the

vector c 0, which exactly satisfies Eq. (22) and
minimizes e to a value eo, may lie outside the
region specified by the constraints. In this case
the quadratic programming methodology deter-
mines a vector c'0, which satisfies the constraints
by being the projection of c0 onto the closest
boundary of the shaded region. The magnitudes
of the components of c'0 in the space X will then
be the desired coefficients ci. Finally, this process
is valid when the spaces X and D have arbitrary
dimensions so long as Dim(X) < Dim(D) and so
obviously applies in this case.
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